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Operating System Structuring Concept 

A B S T R A  C T  

A next generation operating system should accommodate an ultra large-scale, open, self-advancing, 
and distributed environment. This environment is dynamic and versatile in nature. In it, an 
unlimited number of objects, ranging from fine to coarse-grained, are emerging, vanishing, evolving, 
and being replaced; computers of various processing capacities are dynamically connected and 
disconnected to networks; systems can optimize object execution by automatically detecting the 
user's and/or programmer's requirements. In this paper, we investigate several structuring concepts 
in existing operating systems. These structuring concepts include layered structuring, hierarchical 
structuring, policy/mechanism separation, collective kernel structuring, object-based structuring, 
open operating system structuring, virtual machine structuring, and proxy structuring. 

We adjudge that these structuring concepts are not sufficient to support the environment de- 
scribed above because they lack the abilities to handle dynamic system behavior and transparency 
and to control dependency. Thus, we propose a new operating system structuring concept which 
we call the Muse object architecture. In this architecture, an object is a single abstraction of a 
computing resource in the system. Each object has a group of meta-objects which provide an 
execution environment. These meta-objects constitute a meta-space which is represented within 
the meta-hierarchy. An object is causally connected with its meta-objects: the internM structure 
of an object is represented by meta-objects; an object can make a request of meta-computing; a 
meta-object can reflect the results of meta-computing to its object. We discuss object/meta-object 
separation, the meta-hierarchy, and reflective computing of the architecture. We then compare the 
Muse object architecture with the existing structuring concepts. 

We also demonstrate that the Muse object architecture is suitable for structuring future op- 
erating systems by presenting several system ~services of the Muse operating system such as class 
systems, a real-time scheduler with hierarchical policies, and free-grained objects management. 
Class systems facilitate programming by several classes of programming languages. A real-time 
scheduler with hierarchical policies can meet various types of real-time constraints presented by 
applications. Free-grained objects management can suit the object granularity to the application, 
so that an object is efficiently managed according to its granularity. Finally, we present the imple- 
mentation of the Muse operating system which is designed based on the Muse object architecture. 
Version 0.3 of the Muse kernel is running on t:he MC68030 based Sony NEWS workstations. 
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1 Introduction 

1 I n t r o d u c t i o n  

New hardware and software technologies increase the expectations and demands of computer 
users. With respect to operating systems and the applications they support ,  there are several 
specific expectations that  the next generation of operating systems should meet: 

• U l t r a - l a r g e  scale.  Accurately predicting the number of entities - -  workstations, portable 
and mobile computers, persistent objects, devices, activities, address spaces, etc. - -  to be 
manipulated at system configuration time is impossible. Therefore, the number of entities 
that  a system can manage should not be limited. For example, limiting a system to 232 
entities may force a programmer into unnatural  programming styles that  reduce the number 
of manipulated entities. 

• H i g h l y  d i s t r i b u t e d .  As networking becomes even faster and internationalization continues, 
the need for geographically distributed operating systems will increase. In contrast, most 
existing operating systems are restricted, often to a single local area network. In addition, 
since users and programmers are increasingly mobile, it is critical that  their static and dynamic 
computing environment be independent of the location of the computer  they are using. In 
addition, users and programmers should be as protected as possible from changes to network 
topology, file system configurations, new versions of tools, etc. 

• O p e n .  To remain useful, operating systems, like all software, must evolve. It must be 
relatively easy to create new operating system functions, integrate new services, and add new 
processors. Since a system provides no distinction between the levels of protection for systems 
and users, we can easily use well-designed system objects. 

• R i c h  u s e r  a n d  p r o g r a m m e r  i n t e r a c t i o n .  Users should be largely unconstrained with 
respect to how they interact with the system. For instance, they should not be constrained 
to a particular style of inpu t /ou tpu t  device or to a particular user interface style (such as 
command-based or menu-based). Similarly, programmers should be allowed to manipulate 
objects in the system naturally and efficiently. 

• Se l f - advanc ing .  Just  as the number of entities needed is difficult to predict, the kinds of 
services, the resource capacity for computing, and the desired communication path are also 
difficult to predict prior to execution. Thus a system should evolve to provide an optimal 
execution environment in spite of such unpredictability. 

This paper introduces an operating system called Muse, whose design is intended to address 
these and other basic requirements for contemporary operating systems such as real-time support,  
fault-tolerance, reliability, compatibility with existing software (i.e., UNIX1), and heterogeneity 
(i.e., offering gateways to different type of computers and operating systems). This paper details 
Muse's approach to simultaneously solving these problems. The current version of Muse, which is 
more limited, is described later in the paper. 

Muse, an object-oriented distributed operating system, can be characterized by two notable 
features. 

1 UNIX is a registered trademark of AT&T Bell Laboratories. 
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2 Operating System Structuring Concepts 

• M e t a - o b j e c t s .  Each object resides in the context of a collection of meta-objects to handle 
dynamic system behavior, to deal wit:h transparency, to reduce constraints about distribution, 
etc. These meta-objects define the environment for computation and constitutes a meta-space. 
By adapting the meta-environment, the underlying object or objects can be protected from 
many changes to the operating system environment. 

• Ref lec t ion .  To provide an open and self-advancing environment, Muse provides reflective 
computing that presents facilities for self-modifying an object with its environment and for 
inspecting the meta-computing environment of an object. In addition, to define meta-objects 
as objects, we introduce a meta-hierarchy composed of meta-spaces. Thus the relationship 
between an object and its meta-space is relative. 

This paper defines the object architecture which provides the above features. We call this 
architecture the Muse object architecture. The ability of Muse to satisfy the needed requirements 
comes not from meta-objects and reflection alone, but from the kinds of structures we can build 
using them together. For example, while: most conventional structuring concepts - -  including 
layering, hierarchical structuring, collective kernel structuring, proxy structuring, and others - -  do 
not make it easy or possible to handle objects of many different grain-sizes efficiently and naturally, 
Muse can do so by carefully combining meta-objects and reflection. In addition, the structuring 
techniques of Muse allow us to more easily take advantage of advancing network technology such 
as wide-area networks, etc. 

In this paper, we introduce the Muse object architecture and discuss the structuring concept 
for such operating systems. Section 2 discusses several structuring concepts of existing operating 
systems in terms of their pluses and minuses in fulfilling the above requirements. In Section 3, 
the Muse object architecture is described including the definitions of objects, meta-objects, and 
reflective computing. Section 4 gives example applications designed and implemented using the 
Muse object architecture. In Section 5, the prototype implementation of Muse is described briefly. 
Section 6 summarizes this paper. 

2 Operating System Structuring Concepts 

This section argues that existing operating system structuring concepts are not sufficient for 
developing the kinds of systems motivated in the previous section. They include layered structuring, 
hierarchical structuring, policy/mechanism separation, collective kernel structuring, object-based 
structuring, open operating system structuring, virtual machine structuring, and proxy structuring. 
Finally, we summarize this section. 

2.1 L a y e r e d  s t r u c t u r i n g  

Some operating systems are designed as sequences of layers. Each layer of the system provides 
a set of functions to the layer above and is implemented in terms of functions provided by the layer 
below. Each layer contains concurrent processes that implement the layer's functions. Dividing 
the system functions into layers makes it easier to conceptualize (and thus maintain) the system, 
since a process belonging to one layer cannot use a process belonging to higher layers. Specifically, 
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2 Operating System Structuring Concepts 

a given layer can be understood entirely in terms of the layer directly below; no knowledge is 
needed about how the lower layer is implemented (in terms of additional underlying layers) or of 
how the given layer is used by upper layers. The most well-known examples of this are the THE 
system[Dijkstra 68] and Multics[Organick 72]. 

Despite its attractiveness, layered structuring makes it inherently hard to construct a complex 
system. For many good designs, it is not always possible to assign processes to layers while ensuring 
strict layering. For example, many modern operating systems rely heavily on the ability of low-level 
system functions (such as Unix signals) to invoke user-level processes; this is impossible to describe 
using strict layering tec:hniques, since it would involve a circular dependency between layers. 

2.2 H i e r a r c h i c a l  s t r u c t u r i n g  

As with layered structuring, hierarchical structuring demands that strict relationships be im- 
posed on the system's functions. In contrast to layered structuring, modules - -  which are used 
to hide design decisions about data structures, such as segment or process tables - -  are per- 
mitted to span several levels of the functional hierarchy [Habermann et al. 76]. The Ca] system 
[Lampson and Sturgis 76], Pilot[Redell et al. 80], and Cedar[Swinehart et al. 86] are examples of 
systems constructed with hierarchical structuring 2. 

Pilot, for example, consists of a collection of (Mesa) modules composing the hierarchical struc- 
ture. They include (from bottom-up) machine simulating Mesa bytecodes, a low-level part of Mesa 
run-time support, primitive services such as network drivers, file systems, and virtual memory sys- 
tems stream services, and so on. File and virtual memory systems in Pilot are based on what we 
call the manager/kernel pattern: a kernel provides primitives and the manager extends its functions 
using these primitives. In Pilot, functions filer, swapper, file manager, and virtual memory man- 
ager (from bottom-up) compose the function hierarchy, while modules the file and virtual memory 
systems are intermingled. 

This structuring concept can be elaborated using the object-oriented paradigm and the notion of 
classes. Classes represent functions and compose the hierarchical structure: subclasses implement 
the details of their superclasses; subclasses can use the functions of their superclasses. We benefit 
from the class hierarchy at compile-time. This scheme encourages modularization, customization, 
code reuse, maintainability, extendability, and so on. 

Choices[Campbell et al. 87] uses the class hierarchy to implement operating system functions 
such as memory management and process management. Objects which implement kernel functions 
are represented within tlhe C + +  class hierarchy. For example, process management in Choices uses 
the following class hierarchy [Russo et al. 88]: 

Object 
Process 
Pro cess Con t ain er 

SingleProcessCon tainer 
CPU 

~For this paper, we regard mono-lingu~l computing environments such as Cedar and Smalltalk-80 as operating 
systems. 
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2 Operating Sys tem Structuring Concept,; 

FIFOScheduler 
RoundRobinScheduler  

Process implements independent execution of programs. ProcessContainer and its subclasses im- 
plement process scheduling. CPU represents an actual CPU in which actual scheduling mechanisms 
are implemented. 

Hierarchical structuring is based on the experience with layered structuring. Benefits from class 
hierarchy, however, are exclusively inside operating systems. We need the uniform object view to 
be applied both inside and outside of systems. 

2.3 P o l i c y / m e c h a n i s m  s e p a r a t i o n  

A mechanism provides a set of primitives intended to allow the definition and implementa- 
tion of several significantly different policies. Separating mechanism from policy increases system 
flexibility by making it easy to change policies without modifying the underlying mechanisms. 
HYDRA[Wulf et al. 74] is a classic example of a system designed with policy/mechanism separa- 
tion. HYDRA's kernel provides several mechanisms, including capability based protection, creation 
and representation of new types of objects, and primitive object type (procedure, local name space, 
and process) management. HYDRA demonstrates that a wide variety of useful and interesting 
security policies can be built on top of its carefully defined kernel-level capability-based protection 
mechanism [Cohen and Jefferson 75]. 

ARTS[Tokuda and Mercer 89] also employs this concept for real-time scheduling. The kernel 
provides the scheduling mechanisms and system primitives for binding a scheduling policy and 
setting its attributes. Each scheduling policy module is implemented as an object and the kernel 
mechanism upcalls a specified policy object to determine the current scheduling policy. 

Policy/mechanism separation is a variant on hierarchical structuring. Policy modules are defined 
in the higher layer while mechanisms are implemented in the lower layer. Although this separation 
increases the flexibility of systems for users, it is difficult to decide what mechanisms should be 
provided in order to implement any policies users require. 

2.4 C o l l e c t i v e  k e r n e l  s t r u c t u r i n g  

Many modern operating systems are designed as a collection of largely independent processes. 
In this structuring style, one of the key responsibilities of the nucleus (or micro kernel) is to support 
interaction among the processes which implement operating system services. Examples of this ap- 
proach include Chorus[Zimmermann et al. 81], Mach[Accetta et el. 86], and V-kernel[Cheriton 88]. 

Chorus divides the system into three layers: applications, subsystems, and the micro kernel. An 
application program is a collection of objects (or actors in Chorus terminology) that have their own 
execution environment (or subsystems in the Chorus terminology). A subsystem is also defined as 
a collection of actors. The subsystems are supported by the micro kernel (or nucleus in the Chorus 
terminology) which is located at each host [Rozier et al. 88]. Chorus/MIX[Armand et al. 90] is a 
subsystem that simulates System-V compatible UNIX. The UNIX subsystem is a collection of actors 
each of which is responsible for process management, memory management, and event handling to 
simulate the UNIX semantics. 
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Mach also defines a micro kernel in which the IPC facility, virtual memory management, 
task/thread management, processor management, and resource management are incorporated. 
There are several operating systems, such as BSD 4.3 UNIX, System-V 4.0, MS-DOS, the Macin- 
tosh operating system, and a real-time operating system, implemented on top of the Mach micro 
kernel. Camelot[Spector et al. 87], which is also implemented on top of Mach, provides run-time 
libraries that present programmers with transaction processing facilities. 

The V-kernel acts as a software backplane, providing network transparency and memory man- 
agement for lightweight processes and interprocess communication (IPC). Functions other than 
IPC management are implemented as kernel servers which are defined within the micro kernel. 
These include time management, process management, memory management, and device drivers. 

Collective kernel structuring is the current state of the art for designing operating systems. 
In some ways, it takes advantage of the earlier structuring techniques. For example, it uses pol- 
icy/mechanism separation, the micro kernel implements mechanisms while processes carry out 
policies. Since collective kernel structuring defines a way of structuring operating systems (i.e. 
operating system services are implemented on top of the micro kernel), it needs a discipline or rule, 
such as an object-oriented framework on which construct the system, to give a better perspective. 
Further, although this structuring enables an existing service to be replaced with new one, we need 
a way for a service to evolve itself or to acquire new functions for a service. For example, when 
a portable host with restricted user interface is re-connected to a network, a shell program should 
acquire new services to provide users with richer user interface. Collective structuring also has 
the benefit of separating the role of kernel into two parts: mechanisms that manipulate the sys- 
tem resources (such as physical memory, address space, and I/O),  and the programming paradigm 
that helps programmers use the system effectively [Tokuda 90]. Of course, different programming 
paradigms can be built relatively easily, as is also true with virtual machines. 

2.5 O b j e c t - b a s e d  s t r u c t u r i n g  

Operating system services are implemented as a collection of objects which are defined as 
segments protected by capabilities. Each object has a type which designates properties of the 
object: processes, directories, files, etc. An object has a set of operations by which its internal 
segment can be accessed and altered. Before a user requests an object, that user must acquire 
its capabilities including rights permitting operations. The kernel of the system generally has the 
responsibility to protect capabilities against malicious access. It also validates capabilities sup- 
plying by objects. HYDRA, StarOS[Jones et al. 79], Medusa[Ousterhout 80], iMAX 432[Intel 82], 
Eden[Almes et el. 85], Amoeba[Mullender 87], and Clouds[Spafford 86] are examples of systems 
designed with object-based structuring. 

Object-based structuring includes the issues similar to those in collective kernel structuring. It 
also requires a discipline to organize operating system services as a collection of objects. Objects 
in these systems are static, coarse-grained, and expensive. We need objects that are dynamic, 
free-grained, and cheap. 
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2 Operating System Structuring Concepts 

2 .6  O p e n  o p e r a t i n g  s y s t e m  s t r u c t u r i n g  

In open operating system structuring 3, there is no distinction between user objects and system 
objects. The system is written in such a way that  we can design, implement,  access, and modify 
system objects in the same way as user objects. This structuring is adequate for systems that  
are used for experimental or testbed operating systems. Almost all systems based on this concept 
are used for the personal workstation: only a single user can access the system at a time. Also, 
almost all systems provide programmers with a mono-lingual environment (that is, users can use 
only single programming language). Pilot, Smalltalk-80[Goldberg and Robson 83], and Cedar are 
examples of such systems designed. This approach is dangerous and may lead to catastrophic 
failure, since the user can unintentionally or erroneously access system objects. A system that 
does not provide mechanisms to protect against such an attack will, of course, be unsuitable for 
large-scale use. 

Since open operating system structures have a strong tendency to be mono-lingual, they cannot 
meet our basic requirement that  all users wi]l be able to compute successfully using any language. 
Although it is possible for mono-lingual systems to invoke functions or subsystems written in other 
languages - -  a recent version of Smalltalk-80 adds facilities to support  precisely this activity - -  
current a t tempts  of achieving this are still largely ad hoc. 

2.7 V i r t u a l  m a c h i n e  s t r u c t u r i n g  

A virtual machine structure provides a set of abstract machines, each of which acts almost 
identically to the underlying hardware. This ~3tructure works by separately simulating each abstract 
machine on the underlying real machine. For instance, a simulation of the underlying card reader 
(and printer and disk) is used to produce (multiple) virtual card readers (and printers and disks). 
Thus, to each user of the system, it appears as if he has his own copy of the underlying hardware, 
so protection and security is relatively straightforward. VM370[Creasy 81] is a well-known example 
of this approach. One problem with this approach is that  the performance of the operating system 
tends to degrade, since simulation can be costly. Recent technology for implementing virtual 
machines reduces this performance degradation using special assist facilities such as VMA. 

As with collective structuring, virtual machine structuring makes it possible to implement sev- 
eral types of operating systems on top of each virtual machine. This is one of the key requirements 
for our environment. The structure is not, however, sufficient because the operating systems on 
each virtual machine are disjoint. Even with support  for communicating across different emulated 
operating systems, each operating system is a distinct entity. This prohibits the rich kinds of 
interaction, sharing, and communication that  we require. 

2 .8 P r o x y  s t r u c t u r i n g  

Proxy structuring[Shapiro 86] is intended to ease the construction of distributed systems based 
on server/client design. In proxy structurin:g, a client object must  acquire the proxy object that  
represents the server object. Then the client object can communicate with the server object by 

3We do not use the term "open" to mean interconnectability of heterogeneous hardware, as it has is recently been 
used in tile commercial field. Rather, we use it to describe open-ended systems. 
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locally invoking the client's proxy object. When the client and server are executed on different 
hosts, a proxy is created on the client's host. A proxy behaves like a capability protecting the 
server object. Although a proxy object knows the location of the server object and is locally 
accessible from the client object, it is defined as a part of the server. By using a proxy object, users 
benefit from security of the system and location transparency which eases object migration. 

SOS[Shapiro et al. 89] is an example of system based on proxy structuring. In SOS, an elemen- 
tary object is a basic entity managed by the system. A fragmented object is a group that  crosses 
contexts and is implemented using a proxy object. 

Proxy structuring can hide differences between programming languages by supporting objects 
implemented in different programming languages in a uniform way. However, it is difficult to write 
programs for proxy objects, because they differ from normal objects. 

2 .9  S u m m a r y  

The above structuring concepts are interrelated. In many cases, one structuring concept can or 
does employ other structuring concepts to overcome some of its drawbacks. Although the above 
have been suitable for constructing existing operating systems, we need a versatile and flexible 
structuring concept - -  not a rigid and unadaptable one - -  in order to construct environments 
meeting our requirements. We need a structuring concept with the following abilities, for example: 

• To handle dynamic system behavior such as creating/destructing objects, varying network 
topology, and managing fine to coarse-grained objects, 

• To deal with transparency such as location transparency, network transparency, and persis- 
tency transparency, and 

• To control relationships among objects, such as the "knows about" dependency, the "uses" 
dependency, and the consistency dependency. 

The above structurings are not enough to create an open and self-advancing distributed envi- 
ronment because they lack these abilities. In such an environment,  there is an unlimited number 
of objects emerging and replacing old ones. These objects have various types of grain, lifespans, 
and real-time constraints. Furthermore, portable computers are dynamically connected and dis- 
connected to the network. Mobile computers are connecting to the system while moving networks. 
Systems should have the capability to handle such dynamic behavior of objects. The above struc- 
turing techniques, however, cannot handle dynamic system behavior, since the system structure 
is unadaptable: for example, it is difficult to migrate an object to a new environment since the 
dependency among objects cannot be easily controlled. 

We cannot provide users and programmers with a single level of transparency, for example: 

• Although location transparency is useful for an object, it should be possible for an object 
to know location and/or  distance of target objects and communication delay between them. 
This information is valuable for the object, for example, to deliver a message to one of the 
replicas and to make a decision on object migration policies. 

• Although persistent objects are helpful for using object-oriented database systems, it should 
be possible for programmers to control persistency when they construct database systems. 
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3 The Muse Object Architecture 

Thus we need a level which does not provide transparency in order to implement services with 
transparency. 

Objects are independent.  However, we need a means of determining dependency among objects. 
For example, if an object migrates to another location, it might not be benefit from that  migration 
because other objects which depend on the migrating object are still in the original location. Also, 
when an object migrates to a different environment,  the system has to know what is dependent  
on the original environment.  A transaction manager should keep track of objects which are parts 
of the transaction to maintain consistency. Thus we need ability to control dependency among 
objects. The above structuring can implement the mechanism of dealing with transparency and 
controlling dependency but only in an ad hoc way. 

We introduce object-oriented concurrent computing [Yonezawa and Tokoro 87] as a basic model 
for overcoming the above issues. We provide a way to state differences of abstraction in a natural  
way by introducing reflective computing[Smith 84][Maes and Nardi 88], which we call the Muse 
object architecture. The next section describes the details of the Muse object architecture. 

3 The  Muse  Object  Archi tec ture  

The Muse object architecture, a new structuring concept designed to overcome the weaknesses 
identified in the previous section, enables us to achieve the requirements for the kind of environment 
described in the introductory section. Mm,;e provides levels of abstraction: we can, for example, 
provide location transparent  services for objects on top of location dependent  services. The Muse 
object architecture explicitly defines levels of abstraction in such a way that  a meta-object  is 
separated from an object. Meta-objects define a higher level of abstraction than objects. Since a 
group of meta-objects composes meta-space and the relationship between an object and its meta- 
objects is relative, meta-spaces are represented within a hierarchical structure (or meta-hierarchy). 
This section presents the details of the Muse object architecture and compares it with existing 
structuring concepts. 

3.1 A M e t a - o b j e c t  is s e p a r a t e d  f r o m  a n  o b j e c t .  

Our basic computational  model is object-oriented concurrent computing. Applications, devices 
(such as disks or network connections), and even storage are defined as objects or collections of 
objects. In the Muse object architecture, each object consists of: 

• local storage, 

• methods that  access the local storage, and 
• virtual processor(s) that  execute(s) the methods. 

The presence of virtual processors, which distinguishes Muse objects from many other object- 
based systems, allows each object to have its own execution environment.  This style allows the 
introduction of reflective computing into object-oriented concurrent computing. Reflective comput- 
ing provides ability to alter and/or  change the behavior /computat ion of objects dynamically. 

Each Muse object has one or more meta-objects. The purpose of meta-objects is to provide an 
optimal execution environment for the object. In particular, the meta-objects are the computational  
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3 The Muse Object Architecture 

units that  simulate an object's virtual processor(s). An object is "causally connected" with its 
meta-objects: the internal structure of an object is represented by meta-objects. Meta-computing, 
the computation of meta-objects in the meta-level, can alter the behavior of objects. Because 
meta-objects have knowledge of the status of their objects, they can optimally provide services 
for the object 's execution. As far as the authors understand, Muse is the first operating system 
designed based on reflective computing. Each Muse object is defined in such a reflective computing 
framework. 

Figure 1 depicts the conceptual view of the Muse object architecture. Another figure showing 
the actual implementation of the architecture in the Muse operating system can be found in Section 
5. Each object is supported by one or more meta-objects which constitute its meta-space. A meta- 

m e t a - s  ....... "i;;;il s a c e  

~object 

m e t a - s p a c e  

Figure 1: A Conceptual View of the Muse Object Architecture 

space can be viewed as: 

• a dedicated virtual machine for the object, or 
• an optimized operating system for the object. 

From the former view point, the semantics of execution of an object is given by its meta-space. For 
instance, the semantics of communication between objects - -  such as synchronous, asynchronous, 
and real-time 4 - -  is defined by a meta-space. From the latter view point,  the environment within 
which an object is evaluated is provided by the meta-space. For example, in order to support  objects 
with real-time constraints, a scheduler meta-object with the ability of real-time scheduling and a 

4Real-time communication guarantees the communication delay between objects. 
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memory meta-object with the ability to pin objects in memory provide an execution environment 
for the objects. 

3 .2 T h e  m e t a - h i e r a r c h y  

As shown in Figure 1, each meta-space contains one or more meta-objects. The Muse object 
architecture defines meta-objects as Muse objects. This means we need meta-objects of meta- 
objects. These meta-objects constitute another meta-space. In this way meta-spaces compose 
the hierarchical structure called the meta-hierarchy. The meta-hierarchy conceptually extends to 
infinite depth (Figure 1 breaks the meta-hierarchy for clarity). 

Some meta-objects can be shared between different meta-spaces. For a given object, some 
meta-objects can be shared between same level meta-spaces in its meta-hierarchy, and some meta- 
objects can be shared between different levels. For example, mechanisms for a real-time scheduler 
are implemented as a meta-object that  is shared between several meta-spaces while scheduling 
policies are separated between meta-spaces. 

An object has ability to change its meta-space. We call this object migration. Since an object 
can be a meta-object of another object, and a meta-object can be an object which is supported by 
another meta-space, and since an object can change its meta-space, the relationship between an 
object and its meta-objects is relative. 

An object migrates to a different environment by designating a meta-space that  is to provide the 
new execution environment.  If a meta-space cannot support the incoming object, the meta-space 
can integrate a new meta-object that  can support the object; this is possible since the meta-space 
can query the state of the object. Changing meta-spaces allows us to deal with problems such as 
transparency in an effective way. In particular, we can construct a meta-hierarchy in which the 
lower-level meta-objects provide location transparency, and the higher-level meta~objects explicitly 
know the location of objects. This way, an object can change meta-spaces to the higher-level 
meta-spaces when location information is needed, but, otherwise, can compute in the context of 
the lower-level meta-objects. 

3.3 What meta-objects e x i s t  in  meta-space? 

Here, we define a collection of key meta-objects that  constitute meta-spaces: 

M a i l e r  m e t a - o b j e c t s .  Mailer meta-objects have the responsibility of delivering a message to a 
target object. At present, the mailer implements the remote procedure call style of synchronous 
and asynchronous communication. A network mailer delivers a message to a target object on a 
remote host via the underlying protocol handling and network hardware, since the mailer cannot 
send a message directly to a remote object. 

S c h e d u l e r  m e t a - o b j e c t s .  Scheduler meta-objects schedule objects that  are supported by the 
meta-space. Scheduler meta-objects are represented within the meta-hierarchy if they do not have 
real-time constraints. Each processor has a scheduler meta-object that  handles real-time con- 
straints, while policy meta-objects for real-time scheduling compose the hierarchical structure: 
each meta-space contains a policy meta-object. The details are discussed in Subsection 4.2. 
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3 The Muse Object Architecture 

M e m o r y  m e t a - o b j e c t s .  Memory meta-objects manage physical memory and virtual memory. 
There are several memory meta-objects, each with its own memory management  policy: for ex- 
ample, implementing virtual address space without paging for real-time computing, implementing 
distributed shared virtual memory as in Kai Li's [Li 86], and implementing object memory with 
automatic garbage collection. 

Dec i s ion  m a k e r  m e t a - o b j e c t s .  Decision maker meta-objects are used for making a decision 
about object migration policies: which objects should migrate, when should they migrate, and 
where should they migrate to. Decision maker meta-objects gather information such as machine 
load and network load by using the facilities of Muse-IP[Teraoka et al. 89]. 

3.4 R e f l e c t i v e  C o m p u t i n g  

The above definitions give the structure of the Muse object architecture. This subsection 
defines the execution model of this architecture. We introduce the following primitives to facilitate 
interaction between an object and its meta-objects: 

PI:  for an object to make a meta-computing request ( that  is, a request to a meta-object),  and 

P2: for a meta-object to reflect the result of meta-computing to its object. 

P3: to maintain the causal connection link between an object and its meta-space. 

The Muse object architecture provides these primitives as basic functions, and the Muse oper- 
ating system is constructed using these primitives. For example, we can implement inter-object 
communication in such a way that:  

1. A sender object requests that  a mailer meta-object delivers a message to a target object using 
primitive P1. 

2. A mailer meta-object retrieves a message from the sender object and determines the target 
object according to the contents of the message. Then, the message is stored in the target 
object. The internals of an object such as a message queue, are represented as meta-objects 
due to the causal connection between an object and its meta-space (maintained by primitive 
P3), these tasks are represented as meta-computing, i.e. executed by communicat ing meta- 
objects. 

3. A mailer meta-object activates the activity of the target object by using primitive P2. This 
means that  the target object is activated by receiving an incoming message. 

3.5 S u m m a r y  

The Muse object architecture subsumes the existing structuring concepts discussed in Section 2. 
It contains collective kernel structuring and object-based structuring: a system consists of a col- 
lection of objects that  comprise the meta-hierarchy. Unlike a system based on collective kernel 
structuring, an object is a fundamental  entity. Unlike a system with object-based structuring, an 
object is defined within the meta-hierarchy: an object is defined in the framework of reflective 
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4 The Muse Operating System - -  Examples of the Muse Object Architecture 

computing (or the Muse object architecture). The Muse object architecture contrasts with col- 
lective kernel structuring in that the meta-meta-space 5 can be thought of as a micro kernel and 
meta-spaces can be thought of as an operating system emulating objects in systems like Mach and 
Chorus. 

Unlike hierarchical structuring, a group of objects is represented within the meta-hierarchy. 
The meta-hierarchy is orthogonal to policy/mechanism separation. Policy/mechanism separation 
can be applied within the same meta-space or between the meta-spaces. 

The Muse object architecture elaborates virtual machine structuring. Unlike virtual machine 
structuring, a meta-space is a collection of objects and composes a meta-hierarchy. 

The Muse object architecture, thus, is a a new operating structuring concept that supports 
the environments' requirements described in the introductory section. Since the system is dynamic 
in nature, separating meta-objects from objects and reflective computing facilitate handling the 
dynamic behavior of objects. For instance, we can provide a meta-object that  works differently on 
objects of the same kind but different size. 

For objects, we can deal with transparency and control dependency among objects using the 
mechanism of changing meta-spaces or object migration. For instance, we can manage portable 
and/or mobile hosts using a virtual network[Teraoka et al. 90]. In a virtual network, the network 
layer is divided into two sublayers: one is a virtual network sublayer, which hides location and 
movement of hosts; the other is the physical network sublayer, which knows the location of hosts. 
Thus, we caa implement the physical network sublayer as a meta-object for the virtual network 
sublayer. 

4 The Muse Operating S y s t e m -  
Architecture 

Examples  of the Muse Object  

Many operating system services are difficult to implement using existing structuring techniques. 
This section shows how many of these services can be built easily using the Muse object architecture. 
The services we describe are: 

• multi-language programming facilitated by class systems, 
• a real-time scheduler with hierarchical policies, each of which is suitable for scheduling appli- 

cations with real-time constraints, and 

• free-grained objects that adapt their granularity to suit the application and by which storage 
of the object is efficiently managed according to its granularity. 

Each of these services is a key part of the MEuse operating system. 

4.1 C la s s  s y s t e m s  

Each object has a class that acts as a static immutable template of the object. A class contains 
both machine independent and dependent information including the structure of the object, binary 
images of the text, and the format of the data representation. Classes are also used for data and 

SSee Section 5. 
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4 The Muse Operating System - -  Examples of the Muse Object Architecture 

binary image conversion when objects migrate to heterogeneous hardware: a meta-object converts 
the binary image to the new one (a Loader meta-object is responsible for such tasks). 

Figure 2 shows the conceptual view of class systems in the Muse operating system. Since classes 

/~..,~nstance-O~ 
" -  

meta-space 
(MetaClas$) meta-space 

Figure 2: A Conceptual View of Class Systems 

are Muse objects, each class has a class and a meta-space. We call these ClassTemplate and Meta- 
Class, respectively. MetaClass provides classes with the immutability. It designates the default 
meta-space for a new object when a meta-space is not given by a creation message. C1assTemplate 
defines the structure of each class. 

Classes can be represented within a (single and/or  multiple) hierarchy. The class hierarchy 
is independent  of the meta-hierarchy. The class hierarchy is static and is an asset at compile- 
time[Yokote et al. 891]. We introduce a delegation mechanism[Lieberman 86] to obtain properties 
of other objects at run-time. Unlike [Lieberman 86], the Muse delegation mechanism is restricted: 
an object cannot access variables defined in the object to which the message is delegated. The 
delegation is initiated by a mailer meta-object and archived by a MetaClass meta-object. 

In the current implementation,  a class system provides compile-time and run-time facilities for 
the C + +  programming language. It also provides tools that  assist in programming. Each C + +  
class is represented as a Muse class object. That  is, a ClassTemplate object defines the internal 
structure of a C T +  class, while class hierarchy, size of an object, names of variables, etc. are 
defined in Muse class objects. A MetaClass meta-object provides a facility for navigating the class 
hierarchy to find a class required for compilation: a C + +  compiler uses this facility to collapse the 
class hierarchy. 

We can implement class systems that  handle any type of programming language: class systems 
are extended to support a versatile multi-lingual environment. We can provide a MetaClass meta- 
object and a ClassTemplate object for each programming language. These can encapsulate any 
language dependent information. 

We can also implement class systems in such a way that  each class has a specification part  

35 



4 The Muse Operatin G Sys tem - -  Examples  o f  the Muse Object  Architecture 

and an implementation part. This separation facilitates different implementations with the same 
interface and accommodates heterogeneity. The specification part of a class defines the interface 
to the class, while the implementation part of a class defines the concrete realization of the class. 
Muse differs, however, in that  there might be several implementation parts of a class, each of which 
implements a specification according to desired algorithm and hardware dependency. In such a 
class system, while a class internally has two or more parts, only one specification part  is externally 
visible. These parts can be represented as Muse classes. A ClassTemplate object defines the 
structure of such classes and a MetaC1ass meta-object implements access to the specification part  
and the implementat ion parts. Since meta-objects provide the execution environment for objects, 
they can select the desired implementation part of the class. 

HCS takes a similar approaches[Notkin 90]. HCS employs proxies to accommodate  hardware 
and/or  system heterogeneity. Proxies are objects which encapsulate hardware dependency and act 
as stubs. A proxy is created by a class represented within the class hierarchy. We can implement  
this scheme using the Muse class system: proxies can be implemented as meta-objects and are 
created by Muse classes. 

4.2 A r e a l - t i m e  s c h e d u l e r  w i t h  h i e r a r c h i c a l  policies 

Each meta-space contains a scheduler for the objects that  meta-space supports.  This structure 
enables us to provide a suitable scheduler :for applications which, as stated above, consist of a 
collection of objects. This structure leads us to the hierarchical scheduler, since there are two 
or more schedulers in the system which are represented within meta-spaces composing a meta- 
hierarchy. Since each meta-space presents a virtual computing environment for an application, the 
scheduler defined in a meta-space cannot meet real-time constraints. 

Figure 3 shows our real-time scheduler wiith hierarchical policies. To meet real-time constraints 
we separate policy objects that  define scheduling policies into intended policy objects and a base 
policy object. Intended policy objects comprise the hierarchical structure and pass the following 
information down to the base policy object: 

• importance, used for deciding which object is a candidate for failing when several objects 
cannot all meet their deadlines, 

• arrival rate, a cycle for an object to be activated, 
• worst case processing time, an estimate of the time within which an object is expected to 

finish execution, and 

• deadline time, the time left until an object has to finish execution. 

Based on this information, a base policy object decides which scheduling algorithms - -  rate mono- 
tonic scheduling, earliest deadline first scheduling, etc. - -  to use. The adaptat ion mechanism taken 
in real-time operating systems such as Spring-kernel[Stankovic and Ramamri tham 89] should be in- 
tegrated into our real-time scheduler in order to handle dynamic objects. 

4.3 Free-grained objects 

In environments like ours, there are various sizes of objects due to the diversity of programming 
languages and applications. The system slhould provide a mechanism that  efficiently manages 
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Figure 3: The Simplified View of the Hierarchical Policies 

storage for objects of various sizes. Muse solves this problem by providing several memory meta- 
objects that  implement different types of memory management  policies. For example, if an object is 
fine-grained, a memory meta~object may locate two or more objects within the same address space, 
so that  communication overhead, which is mainly caused by context switching, can be reduced. 
Figure 4 shows five objects located in three address spaces. Objects A and B and objects C and 
D reside in the same address spaces, respectively, while object E occupies its own address space. 
If object C communicates with objects A and B, this causes context switching since they are 
located in different address spaces. If they communicate with each other frequently, they should 
be incorporated into the same address space using mechanisms provided by the memory meta- 
object. This idea is derived from the task forces in StarOS and Medusa. Unlike the task forces, 
this scheme is fully dynamic and not visible to programmers. A memory meta-object performs this 
task in cooperation with other meta-objects such as a mailer meta-object and a decision maker 
meta-object. This scheme is also applied to reduce the context switching overhead when two objects 
are located on different hosts. 

Object migration like this may be dangerous. In particular, it might increase, rather than 
decrease, context switching overhead. For example, assume that  the left most address space and 
other address spaces are located at different hosts. In Figure 4, passing a message between objects 
C and E means delivering the message across hosts. This increases overhead for communication 
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Figure 4: Address Spaces and its Memory Meta-object 

between them after moving object C to A and B's address space. To handle this potential  problem 
of migration, we use a new computing model called the Computat ional  Field Model (CFM for 
short), which is best described in terms of some common terms from physics [Tokoro 90]. CFM 
defines a metric space composed of: 

• mass, representing the size of an object, 

• distance, representing the logical distance between objects: communication bandwidth and 
latency are considered along with geographical distance, 

• gravitational forces, representing communication frequency between objects and the amount  
of data  objects transmit  to one another, 

• repulsive forces, representing the computing load around an object, and 

• inertia or friction, representing the cost of object migration. 

CFM facilitates a decisions about object migration. 
Furthermore,  in cooperation with a mailer meta-object,  communication between objects can 

sometimes be translated to local procedure: calls. Since a mailer meta-object  can trace paths of 
communication between objects, if the semantics of a communication is the same as local procedure 
calls, this communication is a candidate fo:r bypassing meta-objects: a method is invoked by the 
local procedure call without assistance of a mailer meta-object. 

Most large-scale distributed systems rely on each object having a unique ID. There are several 
issues that  arise when this approach is taken. An ID is usually assigned according to an object 's 
lifetime and granularity. It may also depend on whether an object is shared with other objects. 
Unique IDs for coarse-grained objects must be large, since there are a large number of objects in 
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the environment. For fine-grained objects, though, it is difficult to use the same ID format. It is too 
big, in practice. For instance, our current implementation, which is not unusual, uses 96-bit unique 
ID's for external reference; of course, 96-bit references for local objects are simply not acceptable. 

If we give up using unique ID to identify fine-grained objects, we have to introduce another 
mechanism that can .distinguish them. There are at least two methods for doing this: 

• The uniqueness of an identifier can be guaranteed within a domain but not throughout the 
whole system. This makes it difficult to determine whether two objects are identical and to 
determine which objects belong to different domains. 

• A unique ID can be assigned when an object is referenced. This reduces the utilization of 
the unique ID. However, this increases the difficulty of object migration, since an object 
containing local IDs is only valid in the original domain. 

In the current implementation, we introduce two or more ID management meta-objects which 
guarantee the uniqueness of object IDs. We designate objects with IDs issued by an ID management 
meta-object in the meta-space supporting the object. Also, an object ID is assigned when the object 
is referenced by others. 

4.4 S u m m a r y  

Muse has several features which distinguish it from other object-based operating systems such as 
HYDRA, Amoeba, Clouds, ARTS, and so on. First, Muse objects are active, while existing object- 
oriented operating systems generally have passive objects. For instance, in the usual approach, an 
object is defined passively, such a file or memory object, and requires separate processes (which 
in some systems are also objects) as an execution environment for executing its methods. Second, 
Muse provides reflective facilities based on the Muse object architecture. Each object has its 
own meta-space. This allows the system to evolve, since each object can monitor its own status 
(and that of other objects) to tailor the system for the most efficient object execution. Third, 
Muse provides an inheritance mechanism that encourages object-oriented programming. The class 
hierarchy is used at compile-time while a delegation mechanism is used at run-time. According to 
the definition of [Wegner 87], Muse is an object-oriented operating system. 

There are several issues in designing object-oriented operating systems and services. They in- 
clude: object granularity, treatment of language objects and system objects, object sharing for 
efficiency, dealing with transparency, and controlling dependency. Each of the services described 
above has unique features that can be implemented relatively easily based on the Muse object ar- 
chitecture. Providing objects MetaClass and ClassTemplate makes it possible to define objects in a 
uniform way independent of the programming languages in which the objects are implemented. We 
can also use class semantics which separate the specification and its implementations. We can meet 
real-time constraints of application even though schedulers compose a hierarchical structure. Our 
scheme for hierarchical scheduling can also apply to systems based on collective kernel structuring. 
The Muse object architecture makes it far easier to implement free-grained objects than conven- 
tional approaches. Meta-objects facilitate the definition of objects with any granularity and the 
optimization of object execution such as hand-off scheduling and identifier management. Systems 
such as Emerald[Jul et al. 88] and Amber[Chase et al. 87] support fine-grained objects and their 
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5 Implementation 

migration. These systems, however, provide these services for a single programming language. Muse 
can define objects in such a way that there is no distinction between objects supported by operating 
systems and objects supported by programming languages in a multi-lingual environment. 

5 Implementat ion 

To give a better feel for the Muse object architecture, we will briefly describe the prototype 
implementation of the Muse operating system. Figure 5 shows a simplified view of the object 
structure of the Muse operating system version 0.3. Although the architecture can support more, 
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Figure 5: The Simplified View of the Object Structure of the Muse Operating System Version 0.3 

version 0.3 uses only three layers of meta-hierarchy: an object space, a meta-space of the objects 
in an object space, and a meta-meta-space of the objects in a meta-space. Meta-objects in the 
meta-meta-space implement hardware dependent functions. 

To implement the Muse object architecture, we introduce the following fundamental facilities: 
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6 Conclusion 

• MuseCore  provides a virtual machine environment in which objects can utilize the Muse object 
architecture. It employs a Con tex t  structure which is used for mapping object execution to 
CPU execution. It also maintains the relationship between an object and its meta-objects 
and manages the transfer of control between them. 

• A reflector (indicated by m~,  which specifies the m-th instance of a reflector in the n-th 
layer of the meta-hierarchy in Figure 5) is an entry point through which objects, explicitly or 
implicitly, invoke meta-computing. An object is connected to its meta-space by a reflector: 
an object can know the name of meta-objects defined in the meta-space through this reflector. 
In the implementation, a reflector also contains parts of the functions of mailer and scheduler 
meta-objects for efficiency. 

shaded oval Q denotes meta-objects constituting the Muse kernel. In the im- In Figure 5, a 

plementation, these meta-objects are assembled into the same address space. They make up one 
meta-space that can be seen through reflector m °. We call this meta-space the meta-meta-space. 

A stripped oval @ ' ~  denotes the meta-objects that implement Muse system functions: for ex- 

ample, pagers for virtual memory management, protocol handlers for network communication, and 
decision makers for object migration. In the implementation, there are several meta-spaces that 
can be seen through reflectors (ml and m~ in the figure). Some meta-objects might be shared 
between two or more meta-spaces. The meta-objects in these meta-spaces are supported by the 

dotted oval ( i - )  denotes objects that constitute applications. Each object meta-nleta-space. A 

is supported by one of the meta-spaces. 
For reflective computing, MuseCore implements the primitives described in Subsection 3.4. In 

implementation, we introduce the following three primitives: 

• M :  an object makes a request of meta-computing: an object invokes a method of a meta- 
object in its meta-space through its reflector, 

• R :  a meta-object reflects the result of meta-computing: it resumes object execution, and 
• C :  objects designate parameters of MuseCore which is used for managing a C o n t e x t  structure: 

for example, creating and destroying it and binding Co n tex t  to external events. 

6 Conc lus ion  

Given the rapid advances in network technology, we crave the advent of ultra large-scale, open, 
self-advancing, and distributed environments. Existing structuring concepts for operating systems 
are, however, insufficient for developing such environments. We propose the Muse object architec- 
ture and demonstrate the Muse operating system, which is intended to support environments like 
these. The novel features of this architecture include: 

• The notion of an object and its meta-objects gives programmers a clear abstraction of the 
system. We distinguish the meta-level abstraction from the object-level abstraction in a 
natural way. 
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• Reflective computing provides a basic mechanism to realize a self-advancing system. This 
is important in the kinds of environments in which we are interested. The system can be 
tailored to suit the objects that comprise an application. 

• The system is flexible and adaptable. Several operating system policies can coexist in the 
system. 

Version 0.3 of the Muse operating system is running on Sony NEWS workstations each of which 
has 25MHz MC68030 CPU and a minimum 4MB of physical memory without external cache. The 
system is written in the C-b+ programming language. We experiments using version 0.3 of the 
Muse operating system on, for example: 

• negotiation between conflicting meta-objects, 

• supporting portable (and mobile) hosts, and 

• porting the system to different types of hardware including a Sun3, Sony RISC-NEWS work- 
stations with MIPS R3000 CPU, the Symmetry shared memory multiprocessor machine, and 
a portable computer. 
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Glossary 

Glossary 

O b j e c t s .  An object is a fundamental  entity in the system. It has local storage and methods.  It 
also provides uniform interface with the outside of the object. The local storage of an object is 
accessed by a method  invoked by an incoming request message. 

C o n c u r r e n t  o b j e c t s .  A concurrent object is an object which encapsulates local storage, meth- 
ods, and a virtual processor. Local storage of a concurrent object is accessed by methods executed 
by a virtual processor: one and only one activity is conceptually associated with a concurrent 
object to execute a method.  A concurrent object facilitates synchronization problems: concurrent 
requests are synchronized at the entry point of the object. 

Classes .  A class describes the similarity ot, a set of objects. For example, it contains methods 
which can access the internal structure of an ,object. A class also acts as a template  for creation of 
an object. 

M e t a - o b j e c t s .  A meta-object is itself an object which provides an environment for executing the 
object. Meta-objects implement the meta-functions of objects such as scheduling, communication,  
and object management.  

R e f l e c t i v e  c o m p u t i n g .  Reflective computing allows an object to alter its meta-functions,  usu- 
Mly represented as meta-objects, during its execution. An object and its meta-objects are causally 
connected: the internals of the object are represented as meta-objects. 

Class  i n h e r i t a n c e .  A class can be defined as a subclass of another class: classes compose a hi- 
erarchicM structure to represent difference and to encourage differential programming. Inheritance 
is usually a programming and a compile-time facility. 

D e l e g a t i o n .  Delegation is a mechanism which forwards an incoming message to a designated 
object. The environment of the object is also forwarded to the designated object. Delegation is 
usually a run-time facility. 
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