
The Muse Object Architecture:
A New

Yasuhiko Yokotet, Fumio Teraokat, Atsushi Mitsuzawa$,
Nobuhisa Fujinamit, and Mario Tokorot$

E-mail: (ykt,tera,mituzawa,fnami,mario}@csl.sony.co.jp, {mituzawa,mario}@keio.ac.jp

tSony Computer Science Laboratory Inc. :~Department of Computer Science
Takanawa M use Building Keio University

3-14-13 Higashi-gotanda, Shinagawa-ku, 3-14-1 Hiyoshi, Kohoku-ku,
Tokyo, 141 JAPAN Yokohama, 223 JAPAN

Operating System Structuring Concept

A B S T R A C T

A next generation operating system should accommodate an ultra large-scale, open, self-advancing,
and distributed environment. This environment is dynamic and versatile in nature. In it, an
unlimited number of objects, ranging from fine to coarse-grained, are emerging, vanishing, evolving,
and being replaced; computers of various processing capacities are dynamically connected and
disconnected to networks; systems can optimize object execution by automatically detecting the
user's and/or programmer's requirements. In this paper, we investigate several structuring concepts
in existing operating systems. These structuring concepts include layered structuring, hierarchical
structuring, policy/mechanism separation, collective kernel structuring, object-based structuring,
open operating system structuring, virtual machine structuring, and proxy structuring.

We adjudge that these structuring concepts are not sufficient to support the environment de-
scribed above because they lack the abilities to handle dynamic system behavior and transparency
and to control dependency. Thus, we propose a new operating system structuring concept which
we call the Muse object architecture. In this architecture, an object is a single abstraction of a
computing resource in the system. Each object has a group of meta-objects which provide an
execution environment. These meta-objects constitute a meta-space which is represented within
the meta-hierarchy. An object is causally connected with its meta-objects: the internM structure
of an object is represented by meta-objects; an object can make a request of meta-computing; a
meta-object can reflect the results of meta-computing to its object. We discuss object/meta-object
separation, the meta-hierarchy, and reflective computing of the architecture. We then compare the
Muse object architecture with the existing structuring concepts.

We also demonstrate that the Muse object architecture is suitable for structuring future op-
erating systems by presenting several system ~services of the Muse operating system such as class
systems, a real-time scheduler with hierarchical policies, and free-grained objects management.
Class systems facilitate programming by several classes of programming languages. A real-time
scheduler with hierarchical policies can meet various types of real-time constraints presented by
applications. Free-grained objects management can suit the object granularity to the application,
so that an object is efficiently managed according to its granularity. Finally, we present the imple-
mentation of the Muse operating system which is designed based on the Muse object architecture.
Version 0.3 of the Muse kernel is running on t:he MC68030 based Sony NEWS workstations.

22

1 Introduction

1 I n t r o d u c t i o n

New hardware and software technologies increase the expectations and demands of computer
users. With respect to operating systems and the applications they support , there are several
specific expectations that the next generation of operating systems should meet:

• U l t r a - l a r g e scale. Accurately predicting the number of entities - - workstations, portable
and mobile computers, persistent objects, devices, activities, address spaces, etc. - - to be
manipulated at system configuration time is impossible. Therefore, the number of entities
that a system can manage should not be limited. For example, limiting a system to 232
entities may force a programmer into unnatural programming styles that reduce the number
of manipulated entities.

• H i g h l y d i s t r i b u t e d . As networking becomes even faster and internationalization continues,
the need for geographically distributed operating systems will increase. In contrast, most
existing operating systems are restricted, often to a single local area network. In addition,
since users and programmers are increasingly mobile, it is critical that their static and dynamic
computing environment be independent of the location of the computer they are using. In
addition, users and programmers should be as protected as possible from changes to network
topology, file system configurations, new versions of tools, etc.

• O p e n . To remain useful, operating systems, like all software, must evolve. It must be
relatively easy to create new operating system functions, integrate new services, and add new
processors. Since a system provides no distinction between the levels of protection for systems
and users, we can easily use well-designed system objects.

• R i c h u s e r a n d p r o g r a m m e r i n t e r a c t i o n . Users should be largely unconstrained with
respect to how they interact with the system. For instance, they should not be constrained
to a particular style of inpu t /ou tpu t device or to a particular user interface style (such as
command-based or menu-based). Similarly, programmers should be allowed to manipulate
objects in the system naturally and efficiently.

• Se l f - advanc ing . Just as the number of entities needed is difficult to predict, the kinds of
services, the resource capacity for computing, and the desired communication path are also
difficult to predict prior to execution. Thus a system should evolve to provide an optimal
execution environment in spite of such unpredictability.

This paper introduces an operating system called Muse, whose design is intended to address
these and other basic requirements for contemporary operating systems such as real-time support,
fault-tolerance, reliability, compatibility with existing software (i.e., UNIX1), and heterogeneity
(i.e., offering gateways to different type of computers and operating systems). This paper details
Muse's approach to simultaneously solving these problems. The current version of Muse, which is
more limited, is described later in the paper.

Muse, an object-oriented distributed operating system, can be characterized by two notable
features.

1 UNIX is a registered trademark of AT&T Bell Laboratories.

23

2 Operating System Structuring Concepts

• M e t a - o b j e c t s . Each object resides in the context of a collection of meta-objects to handle
dynamic system behavior, to deal wit:h transparency, to reduce constraints about distribution,
etc. These meta-objects define the environment for computation and constitutes a meta-space.
By adapting the meta-environment, the underlying object or objects can be protected from
many changes to the operating system environment.

• Ref lec t ion . To provide an open and self-advancing environment, Muse provides reflective
computing that presents facilities for self-modifying an object with its environment and for
inspecting the meta-computing environment of an object. In addition, to define meta-objects
as objects, we introduce a meta-hierarchy composed of meta-spaces. Thus the relationship
between an object and its meta-space is relative.

This paper defines the object architecture which provides the above features. We call this
architecture the Muse object architecture. The ability of Muse to satisfy the needed requirements
comes not from meta-objects and reflection alone, but from the kinds of structures we can build
using them together. For example, while: most conventional structuring concepts - - including
layering, hierarchical structuring, collective kernel structuring, proxy structuring, and others - - do
not make it easy or possible to handle objects of many different grain-sizes efficiently and naturally,
Muse can do so by carefully combining meta-objects and reflection. In addition, the structuring
techniques of Muse allow us to more easily take advantage of advancing network technology such
as wide-area networks, etc.

In this paper, we introduce the Muse object architecture and discuss the structuring concept
for such operating systems. Section 2 discusses several structuring concepts of existing operating
systems in terms of their pluses and minuses in fulfilling the above requirements. In Section 3,
the Muse object architecture is described including the definitions of objects, meta-objects, and
reflective computing. Section 4 gives example applications designed and implemented using the
Muse object architecture. In Section 5, the prototype implementation of Muse is described briefly.
Section 6 summarizes this paper.

2 Operating System Structuring Concepts

This section argues that existing operating system structuring concepts are not sufficient for
developing the kinds of systems motivated in the previous section. They include layered structuring,
hierarchical structuring, policy/mechanism separation, collective kernel structuring, object-based
structuring, open operating system structuring, virtual machine structuring, and proxy structuring.
Finally, we summarize this section.

2.1 L a y e r e d s t r u c t u r i n g

Some operating systems are designed as sequences of layers. Each layer of the system provides
a set of functions to the layer above and is implemented in terms of functions provided by the layer
below. Each layer contains concurrent processes that implement the layer's functions. Dividing
the system functions into layers makes it easier to conceptualize (and thus maintain) the system,
since a process belonging to one layer cannot use a process belonging to higher layers. Specifically,

24

2 Operating System Structuring Concepts

a given layer can be understood entirely in terms of the layer directly below; no knowledge is
needed about how the lower layer is implemented (in terms of additional underlying layers) or of
how the given layer is used by upper layers. The most well-known examples of this are the THE
system[Dijkstra 68] and Multics[Organick 72].

Despite its attractiveness, layered structuring makes it inherently hard to construct a complex
system. For many good designs, it is not always possible to assign processes to layers while ensuring
strict layering. For example, many modern operating systems rely heavily on the ability of low-level
system functions (such as Unix signals) to invoke user-level processes; this is impossible to describe
using strict layering tec:hniques, since it would involve a circular dependency between layers.

2.2 H i e r a r c h i c a l s t r u c t u r i n g

As with layered structuring, hierarchical structuring demands that strict relationships be im-
posed on the system's functions. In contrast to layered structuring, modules - - which are used
to hide design decisions about data structures, such as segment or process tables - - are per-
mitted to span several levels of the functional hierarchy [Habermann et al. 76]. The Ca] system
[Lampson and Sturgis 76], Pilot[Redell et al. 80], and Cedar[Swinehart et al. 86] are examples of
systems constructed with hierarchical structuring 2.

Pilot, for example, consists of a collection of (Mesa) modules composing the hierarchical struc-
ture. They include (from bottom-up) machine simulating Mesa bytecodes, a low-level part of Mesa
run-time support, primitive services such as network drivers, file systems, and virtual memory sys-
tems stream services, and so on. File and virtual memory systems in Pilot are based on what we
call the manager/kernel pattern: a kernel provides primitives and the manager extends its functions
using these primitives. In Pilot, functions filer, swapper, file manager, and virtual memory man-
ager (from bottom-up) compose the function hierarchy, while modules the file and virtual memory
systems are intermingled.

This structuring concept can be elaborated using the object-oriented paradigm and the notion of
classes. Classes represent functions and compose the hierarchical structure: subclasses implement
the details of their superclasses; subclasses can use the functions of their superclasses. We benefit
from the class hierarchy at compile-time. This scheme encourages modularization, customization,
code reuse, maintainability, extendability, and so on.

Choices[Campbell et al. 87] uses the class hierarchy to implement operating system functions
such as memory management and process management. Objects which implement kernel functions
are represented within tlhe C + + class hierarchy. For example, process management in Choices uses
the following class hierarchy [Russo et al. 88]:

Object
Process
Pro cess Con t ain er

SingleProcessCon tainer
CPU

~For this paper, we regard mono-lingu~l computing environments such as Cedar and Smalltalk-80 as operating
systems.

25

2 Operating Sys tem Structuring Concept,;

FIFOScheduler
RoundRobinScheduler

Process implements independent execution of programs. ProcessContainer and its subclasses im-
plement process scheduling. CPU represents an actual CPU in which actual scheduling mechanisms
are implemented.

Hierarchical structuring is based on the experience with layered structuring. Benefits from class
hierarchy, however, are exclusively inside operating systems. We need the uniform object view to
be applied both inside and outside of systems.

2.3 P o l i c y / m e c h a n i s m s e p a r a t i o n

A mechanism provides a set of primitives intended to allow the definition and implementa-
tion of several significantly different policies. Separating mechanism from policy increases system
flexibility by making it easy to change policies without modifying the underlying mechanisms.
HYDRA[Wulf et al. 74] is a classic example of a system designed with policy/mechanism separa-
tion. HYDRA's kernel provides several mechanisms, including capability based protection, creation
and representation of new types of objects, and primitive object type (procedure, local name space,
and process) management. HYDRA demonstrates that a wide variety of useful and interesting
security policies can be built on top of its carefully defined kernel-level capability-based protection
mechanism [Cohen and Jefferson 75].

ARTS[Tokuda and Mercer 89] also employs this concept for real-time scheduling. The kernel
provides the scheduling mechanisms and system primitives for binding a scheduling policy and
setting its attributes. Each scheduling policy module is implemented as an object and the kernel
mechanism upcalls a specified policy object to determine the current scheduling policy.

Policy/mechanism separation is a variant on hierarchical structuring. Policy modules are defined
in the higher layer while mechanisms are implemented in the lower layer. Although this separation
increases the flexibility of systems for users, it is difficult to decide what mechanisms should be
provided in order to implement any policies users require.

2.4 C o l l e c t i v e k e r n e l s t r u c t u r i n g

Many modern operating systems are designed as a collection of largely independent processes.
In this structuring style, one of the key responsibilities of the nucleus (or micro kernel) is to support
interaction among the processes which implement operating system services. Examples of this ap-
proach include Chorus[Zimmermann et al. 81], Mach[Accetta et el. 86], and V-kernel[Cheriton 88].

Chorus divides the system into three layers: applications, subsystems, and the micro kernel. An
application program is a collection of objects (or actors in Chorus terminology) that have their own
execution environment (or subsystems in the Chorus terminology). A subsystem is also defined as
a collection of actors. The subsystems are supported by the micro kernel (or nucleus in the Chorus
terminology) which is located at each host [Rozier et al. 88]. Chorus/MIX[Armand et al. 90] is a
subsystem that simulates System-V compatible UNIX. The UNIX subsystem is a collection of actors
each of which is responsible for process management, memory management, and event handling to
simulate the UNIX semantics.

26

20peratin 6 System Structurin 6 Concepts

Mach also defines a micro kernel in which the IPC facility, virtual memory management,
task/thread management, processor management, and resource management are incorporated.
There are several operating systems, such as BSD 4.3 UNIX, System-V 4.0, MS-DOS, the Macin-
tosh operating system, and a real-time operating system, implemented on top of the Mach micro
kernel. Camelot[Spector et al. 87], which is also implemented on top of Mach, provides run-time
libraries that present programmers with transaction processing facilities.

The V-kernel acts as a software backplane, providing network transparency and memory man-
agement for lightweight processes and interprocess communication (IPC). Functions other than
IPC management are implemented as kernel servers which are defined within the micro kernel.
These include time management, process management, memory management, and device drivers.

Collective kernel structuring is the current state of the art for designing operating systems.
In some ways, it takes advantage of the earlier structuring techniques. For example, it uses pol-
icy/mechanism separation, the micro kernel implements mechanisms while processes carry out
policies. Since collective kernel structuring defines a way of structuring operating systems (i.e.
operating system services are implemented on top of the micro kernel), it needs a discipline or rule,
such as an object-oriented framework on which construct the system, to give a better perspective.
Further, although this structuring enables an existing service to be replaced with new one, we need
a way for a service to evolve itself or to acquire new functions for a service. For example, when
a portable host with restricted user interface is re-connected to a network, a shell program should
acquire new services to provide users with richer user interface. Collective structuring also has
the benefit of separating the role of kernel into two parts: mechanisms that manipulate the sys-
tem resources (such as physical memory, address space, and I/O), and the programming paradigm
that helps programmers use the system effectively [Tokuda 90]. Of course, different programming
paradigms can be built relatively easily, as is also true with virtual machines.

2.5 O b j e c t - b a s e d s t r u c t u r i n g

Operating system services are implemented as a collection of objects which are defined as
segments protected by capabilities. Each object has a type which designates properties of the
object: processes, directories, files, etc. An object has a set of operations by which its internal
segment can be accessed and altered. Before a user requests an object, that user must acquire
its capabilities including rights permitting operations. The kernel of the system generally has the
responsibility to protect capabilities against malicious access. It also validates capabilities sup-
plying by objects. HYDRA, StarOS[Jones et al. 79], Medusa[Ousterhout 80], iMAX 432[Intel 82],
Eden[Almes et el. 85], Amoeba[Mullender 87], and Clouds[Spafford 86] are examples of systems
designed with object-based structuring.

Object-based structuring includes the issues similar to those in collective kernel structuring. It
also requires a discipline to organize operating system services as a collection of objects. Objects
in these systems are static, coarse-grained, and expensive. We need objects that are dynamic,
free-grained, and cheap.

27

2 Operating System Structuring Concepts

2 .6 O p e n o p e r a t i n g s y s t e m s t r u c t u r i n g

In open operating system structuring 3, there is no distinction between user objects and system
objects. The system is written in such a way that we can design, implement, access, and modify
system objects in the same way as user objects. This structuring is adequate for systems that
are used for experimental or testbed operating systems. Almost all systems based on this concept
are used for the personal workstation: only a single user can access the system at a time. Also,
almost all systems provide programmers with a mono-lingual environment (that is, users can use
only single programming language). Pilot, Smalltalk-80[Goldberg and Robson 83], and Cedar are
examples of such systems designed. This approach is dangerous and may lead to catastrophic
failure, since the user can unintentionally or erroneously access system objects. A system that
does not provide mechanisms to protect against such an attack will, of course, be unsuitable for
large-scale use.

Since open operating system structures have a strong tendency to be mono-lingual, they cannot
meet our basic requirement that all users wi]l be able to compute successfully using any language.
Although it is possible for mono-lingual systems to invoke functions or subsystems written in other
languages - - a recent version of Smalltalk-80 adds facilities to support precisely this activity - -
current a t tempts of achieving this are still largely ad hoc.

2.7 V i r t u a l m a c h i n e s t r u c t u r i n g

A virtual machine structure provides a set of abstract machines, each of which acts almost
identically to the underlying hardware. This ~3tructure works by separately simulating each abstract
machine on the underlying real machine. For instance, a simulation of the underlying card reader
(and printer and disk) is used to produce (multiple) virtual card readers (and printers and disks).
Thus, to each user of the system, it appears as if he has his own copy of the underlying hardware,
so protection and security is relatively straightforward. VM370[Creasy 81] is a well-known example
of this approach. One problem with this approach is that the performance of the operating system
tends to degrade, since simulation can be costly. Recent technology for implementing virtual
machines reduces this performance degradation using special assist facilities such as VMA.

As with collective structuring, virtual machine structuring makes it possible to implement sev-
eral types of operating systems on top of each virtual machine. This is one of the key requirements
for our environment. The structure is not, however, sufficient because the operating systems on
each virtual machine are disjoint. Even with support for communicating across different emulated
operating systems, each operating system is a distinct entity. This prohibits the rich kinds of
interaction, sharing, and communication that we require.

2 .8 P r o x y s t r u c t u r i n g

Proxy structuring[Shapiro 86] is intended to ease the construction of distributed systems based
on server/client design. In proxy structurin:g, a client object must acquire the proxy object that
represents the server object. Then the client object can communicate with the server object by

3We do not use the term "open" to mean interconnectability of heterogeneous hardware, as it has is recently been
used in tile commercial field. Rather, we use it to describe open-ended systems.

28

2 Operatin G System Structuring Concepts

locally invoking the client's proxy object. When the client and server are executed on different
hosts, a proxy is created on the client's host. A proxy behaves like a capability protecting the
server object. Although a proxy object knows the location of the server object and is locally
accessible from the client object, it is defined as a part of the server. By using a proxy object, users
benefit from security of the system and location transparency which eases object migration.

SOS[Shapiro et al. 89] is an example of system based on proxy structuring. In SOS, an elemen-
tary object is a basic entity managed by the system. A fragmented object is a group that crosses
contexts and is implemented using a proxy object.

Proxy structuring can hide differences between programming languages by supporting objects
implemented in different programming languages in a uniform way. However, it is difficult to write
programs for proxy objects, because they differ from normal objects.

2 .9 S u m m a r y

The above structuring concepts are interrelated. In many cases, one structuring concept can or
does employ other structuring concepts to overcome some of its drawbacks. Although the above
have been suitable for constructing existing operating systems, we need a versatile and flexible
structuring concept - - not a rigid and unadaptable one - - in order to construct environments
meeting our requirements. We need a structuring concept with the following abilities, for example:

• To handle dynamic system behavior such as creating/destructing objects, varying network
topology, and managing fine to coarse-grained objects,

• To deal with transparency such as location transparency, network transparency, and persis-
tency transparency, and

• To control relationships among objects, such as the "knows about" dependency, the "uses"
dependency, and the consistency dependency.

The above structurings are not enough to create an open and self-advancing distributed envi-
ronment because they lack these abilities. In such an environment, there is an unlimited number
of objects emerging and replacing old ones. These objects have various types of grain, lifespans,
and real-time constraints. Furthermore, portable computers are dynamically connected and dis-
connected to the network. Mobile computers are connecting to the system while moving networks.
Systems should have the capability to handle such dynamic behavior of objects. The above struc-
turing techniques, however, cannot handle dynamic system behavior, since the system structure
is unadaptable: for example, it is difficult to migrate an object to a new environment since the
dependency among objects cannot be easily controlled.

We cannot provide users and programmers with a single level of transparency, for example:

• Although location transparency is useful for an object, it should be possible for an object
to know location and/or distance of target objects and communication delay between them.
This information is valuable for the object, for example, to deliver a message to one of the
replicas and to make a decision on object migration policies.

• Although persistent objects are helpful for using object-oriented database systems, it should
be possible for programmers to control persistency when they construct database systems.

29

3 The Muse Object Architecture

Thus we need a level which does not provide transparency in order to implement services with
transparency.

Objects are independent. However, we need a means of determining dependency among objects.
For example, if an object migrates to another location, it might not be benefit from that migration
because other objects which depend on the migrating object are still in the original location. Also,
when an object migrates to a different environment, the system has to know what is dependent
on the original environment. A transaction manager should keep track of objects which are parts
of the transaction to maintain consistency. Thus we need ability to control dependency among
objects. The above structuring can implement the mechanism of dealing with transparency and
controlling dependency but only in an ad hoc way.

We introduce object-oriented concurrent computing [Yonezawa and Tokoro 87] as a basic model
for overcoming the above issues. We provide a way to state differences of abstraction in a natural
way by introducing reflective computing[Smith 84][Maes and Nardi 88], which we call the Muse
object architecture. The next section describes the details of the Muse object architecture.

3 The Muse Object Archi tec ture

The Muse object architecture, a new structuring concept designed to overcome the weaknesses
identified in the previous section, enables us to achieve the requirements for the kind of environment
described in the introductory section. Mm,;e provides levels of abstraction: we can, for example,
provide location transparent services for objects on top of location dependent services. The Muse
object architecture explicitly defines levels of abstraction in such a way that a meta-object is
separated from an object. Meta-objects define a higher level of abstraction than objects. Since a
group of meta-objects composes meta-space and the relationship between an object and its meta-
objects is relative, meta-spaces are represented within a hierarchical structure (or meta-hierarchy).
This section presents the details of the Muse object architecture and compares it with existing
structuring concepts.

3.1 A M e t a - o b j e c t is s e p a r a t e d f r o m a n o b j e c t .

Our basic computational model is object-oriented concurrent computing. Applications, devices
(such as disks or network connections), and even storage are defined as objects or collections of
objects. In the Muse object architecture, each object consists of:

• local storage,

• methods that access the local storage, and
• virtual processor(s) that execute(s) the methods.

The presence of virtual processors, which distinguishes Muse objects from many other object-
based systems, allows each object to have its own execution environment. This style allows the
introduction of reflective computing into object-oriented concurrent computing. Reflective comput-
ing provides ability to alter and/or change the behavior /computat ion of objects dynamically.

Each Muse object has one or more meta-objects. The purpose of meta-objects is to provide an
optimal execution environment for the object. In particular, the meta-objects are the computational

30

3 The Muse Object Architecture

units that simulate an object's virtual processor(s). An object is "causally connected" with its
meta-objects: the internal structure of an object is represented by meta-objects. Meta-computing,
the computation of meta-objects in the meta-level, can alter the behavior of objects. Because
meta-objects have knowledge of the status of their objects, they can optimally provide services
for the object 's execution. As far as the authors understand, Muse is the first operating system
designed based on reflective computing. Each Muse object is defined in such a reflective computing
framework.

Figure 1 depicts the conceptual view of the Muse object architecture. Another figure showing
the actual implementation of the architecture in the Muse operating system can be found in Section
5. Each object is supported by one or more meta-objects which constitute its meta-space. A meta-

m e t a - s "i;;;il s a c e

~object

m e t a - s p a c e

Figure 1: A Conceptual View of the Muse Object Architecture

space can be viewed as:

• a dedicated virtual machine for the object, or
• an optimized operating system for the object.

From the former view point, the semantics of execution of an object is given by its meta-space. For
instance, the semantics of communication between objects - - such as synchronous, asynchronous,
and real-time 4 - - is defined by a meta-space. From the latter view point, the environment within
which an object is evaluated is provided by the meta-space. For example, in order to support objects
with real-time constraints, a scheduler meta-object with the ability of real-time scheduling and a

4Real-time communication guarantees the communication delay between objects.

31

3 The Muse Object Architecture

memory meta-object with the ability to pin objects in memory provide an execution environment
for the objects.

3 .2 T h e m e t a - h i e r a r c h y

As shown in Figure 1, each meta-space contains one or more meta-objects. The Muse object
architecture defines meta-objects as Muse objects. This means we need meta-objects of meta-
objects. These meta-objects constitute another meta-space. In this way meta-spaces compose
the hierarchical structure called the meta-hierarchy. The meta-hierarchy conceptually extends to
infinite depth (Figure 1 breaks the meta-hierarchy for clarity).

Some meta-objects can be shared between different meta-spaces. For a given object, some
meta-objects can be shared between same level meta-spaces in its meta-hierarchy, and some meta-
objects can be shared between different levels. For example, mechanisms for a real-time scheduler
are implemented as a meta-object that is shared between several meta-spaces while scheduling
policies are separated between meta-spaces.

An object has ability to change its meta-space. We call this object migration. Since an object
can be a meta-object of another object, and a meta-object can be an object which is supported by
another meta-space, and since an object can change its meta-space, the relationship between an
object and its meta-objects is relative.

An object migrates to a different environment by designating a meta-space that is to provide the
new execution environment. If a meta-space cannot support the incoming object, the meta-space
can integrate a new meta-object that can support the object; this is possible since the meta-space
can query the state of the object. Changing meta-spaces allows us to deal with problems such as
transparency in an effective way. In particular, we can construct a meta-hierarchy in which the
lower-level meta-objects provide location transparency, and the higher-level meta~objects explicitly
know the location of objects. This way, an object can change meta-spaces to the higher-level
meta-spaces when location information is needed, but, otherwise, can compute in the context of
the lower-level meta-objects.

3.3 What meta-objects e x i s t in meta-space?

Here, we define a collection of key meta-objects that constitute meta-spaces:

M a i l e r m e t a - o b j e c t s . Mailer meta-objects have the responsibility of delivering a message to a
target object. At present, the mailer implements the remote procedure call style of synchronous
and asynchronous communication. A network mailer delivers a message to a target object on a
remote host via the underlying protocol handling and network hardware, since the mailer cannot
send a message directly to a remote object.

S c h e d u l e r m e t a - o b j e c t s . Scheduler meta-objects schedule objects that are supported by the
meta-space. Scheduler meta-objects are represented within the meta-hierarchy if they do not have
real-time constraints. Each processor has a scheduler meta-object that handles real-time con-
straints, while policy meta-objects for real-time scheduling compose the hierarchical structure:
each meta-space contains a policy meta-object. The details are discussed in Subsection 4.2.

]2

3 The Muse Object Architecture

M e m o r y m e t a - o b j e c t s . Memory meta-objects manage physical memory and virtual memory.
There are several memory meta-objects, each with its own memory management policy: for ex-
ample, implementing virtual address space without paging for real-time computing, implementing
distributed shared virtual memory as in Kai Li's [Li 86], and implementing object memory with
automatic garbage collection.

Dec i s ion m a k e r m e t a - o b j e c t s . Decision maker meta-objects are used for making a decision
about object migration policies: which objects should migrate, when should they migrate, and
where should they migrate to. Decision maker meta-objects gather information such as machine
load and network load by using the facilities of Muse-IP[Teraoka et al. 89].

3.4 R e f l e c t i v e C o m p u t i n g

The above definitions give the structure of the Muse object architecture. This subsection
defines the execution model of this architecture. We introduce the following primitives to facilitate
interaction between an object and its meta-objects:

PI: for an object to make a meta-computing request (that is, a request to a meta-object), and

P2: for a meta-object to reflect the result of meta-computing to its object.

P3: to maintain the causal connection link between an object and its meta-space.

The Muse object architecture provides these primitives as basic functions, and the Muse oper-
ating system is constructed using these primitives. For example, we can implement inter-object
communication in such a way that:

1. A sender object requests that a mailer meta-object delivers a message to a target object using
primitive P1.

2. A mailer meta-object retrieves a message from the sender object and determines the target
object according to the contents of the message. Then, the message is stored in the target
object. The internals of an object such as a message queue, are represented as meta-objects
due to the causal connection between an object and its meta-space (maintained by primitive
P3), these tasks are represented as meta-computing, i.e. executed by communicat ing meta-
objects.

3. A mailer meta-object activates the activity of the target object by using primitive P2. This
means that the target object is activated by receiving an incoming message.

3.5 S u m m a r y

The Muse object architecture subsumes the existing structuring concepts discussed in Section 2.
It contains collective kernel structuring and object-based structuring: a system consists of a col-
lection of objects that comprise the meta-hierarchy. Unlike a system based on collective kernel
structuring, an object is a fundamental entity. Unlike a system with object-based structuring, an
object is defined within the meta-hierarchy: an object is defined in the framework of reflective

33

4 The Muse Operating System - - Examples of the Muse Object Architecture

computing (or the Muse object architecture). The Muse object architecture contrasts with col-
lective kernel structuring in that the meta-meta-space 5 can be thought of as a micro kernel and
meta-spaces can be thought of as an operating system emulating objects in systems like Mach and
Chorus.

Unlike hierarchical structuring, a group of objects is represented within the meta-hierarchy.
The meta-hierarchy is orthogonal to policy/mechanism separation. Policy/mechanism separation
can be applied within the same meta-space or between the meta-spaces.

The Muse object architecture elaborates virtual machine structuring. Unlike virtual machine
structuring, a meta-space is a collection of objects and composes a meta-hierarchy.

The Muse object architecture, thus, is a a new operating structuring concept that supports
the environments' requirements described in the introductory section. Since the system is dynamic
in nature, separating meta-objects from objects and reflective computing facilitate handling the
dynamic behavior of objects. For instance, we can provide a meta-object that works differently on
objects of the same kind but different size.

For objects, we can deal with transparency and control dependency among objects using the
mechanism of changing meta-spaces or object migration. For instance, we can manage portable
and/or mobile hosts using a virtual network[Teraoka et al. 90]. In a virtual network, the network
layer is divided into two sublayers: one is a virtual network sublayer, which hides location and
movement of hosts; the other is the physical network sublayer, which knows the location of hosts.
Thus, we caa implement the physical network sublayer as a meta-object for the virtual network
sublayer.

4 The Muse Operating S y s t e m -
Architecture

Examples of the Muse Object

Many operating system services are difficult to implement using existing structuring techniques.
This section shows how many of these services can be built easily using the Muse object architecture.
The services we describe are:

• multi-language programming facilitated by class systems,
• a real-time scheduler with hierarchical policies, each of which is suitable for scheduling appli-

cations with real-time constraints, and

• free-grained objects that adapt their granularity to suit the application and by which storage
of the object is efficiently managed according to its granularity.

Each of these services is a key part of the MEuse operating system.

4.1 C la s s s y s t e m s

Each object has a class that acts as a static immutable template of the object. A class contains
both machine independent and dependent information including the structure of the object, binary
images of the text, and the format of the data representation. Classes are also used for data and

SSee Section 5.

34

4 The Muse Operating System - - Examples of the Muse Object Architecture

binary image conversion when objects migrate to heterogeneous hardware: a meta-object converts
the binary image to the new one (a Loader meta-object is responsible for such tasks).

Figure 2 shows the conceptual view of class systems in the Muse operating system. Since classes

/~..,~nstance-O~
" -

meta-space
(MetaClas$) meta-space

Figure 2: A Conceptual View of Class Systems

are Muse objects, each class has a class and a meta-space. We call these ClassTemplate and Meta-
Class, respectively. MetaClass provides classes with the immutability. It designates the default
meta-space for a new object when a meta-space is not given by a creation message. C1assTemplate
defines the structure of each class.

Classes can be represented within a (single and/or multiple) hierarchy. The class hierarchy
is independent of the meta-hierarchy. The class hierarchy is static and is an asset at compile-
time[Yokote et al. 891]. We introduce a delegation mechanism[Lieberman 86] to obtain properties
of other objects at run-time. Unlike [Lieberman 86], the Muse delegation mechanism is restricted:
an object cannot access variables defined in the object to which the message is delegated. The
delegation is initiated by a mailer meta-object and archived by a MetaClass meta-object.

In the current implementation, a class system provides compile-time and run-time facilities for
the C + + programming language. It also provides tools that assist in programming. Each C + +
class is represented as a Muse class object. That is, a ClassTemplate object defines the internal
structure of a C T + class, while class hierarchy, size of an object, names of variables, etc. are
defined in Muse class objects. A MetaClass meta-object provides a facility for navigating the class
hierarchy to find a class required for compilation: a C + + compiler uses this facility to collapse the
class hierarchy.

We can implement class systems that handle any type of programming language: class systems
are extended to support a versatile multi-lingual environment. We can provide a MetaClass meta-
object and a ClassTemplate object for each programming language. These can encapsulate any
language dependent information.

We can also implement class systems in such a way that each class has a specification part

35

4 The Muse Operatin G Sys tem - - Examples o f the Muse Object Architecture

and an implementation part. This separation facilitates different implementations with the same
interface and accommodates heterogeneity. The specification part of a class defines the interface
to the class, while the implementation part of a class defines the concrete realization of the class.
Muse differs, however, in that there might be several implementation parts of a class, each of which
implements a specification according to desired algorithm and hardware dependency. In such a
class system, while a class internally has two or more parts, only one specification part is externally
visible. These parts can be represented as Muse classes. A ClassTemplate object defines the
structure of such classes and a MetaC1ass meta-object implements access to the specification part
and the implementat ion parts. Since meta-objects provide the execution environment for objects,
they can select the desired implementation part of the class.

HCS takes a similar approaches[Notkin 90]. HCS employs proxies to accommodate hardware
and/or system heterogeneity. Proxies are objects which encapsulate hardware dependency and act
as stubs. A proxy is created by a class represented within the class hierarchy. We can implement
this scheme using the Muse class system: proxies can be implemented as meta-objects and are
created by Muse classes.

4.2 A r e a l - t i m e s c h e d u l e r w i t h h i e r a r c h i c a l policies

Each meta-space contains a scheduler for the objects that meta-space supports. This structure
enables us to provide a suitable scheduler :for applications which, as stated above, consist of a
collection of objects. This structure leads us to the hierarchical scheduler, since there are two
or more schedulers in the system which are represented within meta-spaces composing a meta-
hierarchy. Since each meta-space presents a virtual computing environment for an application, the
scheduler defined in a meta-space cannot meet real-time constraints.

Figure 3 shows our real-time scheduler wiith hierarchical policies. To meet real-time constraints
we separate policy objects that define scheduling policies into intended policy objects and a base
policy object. Intended policy objects comprise the hierarchical structure and pass the following
information down to the base policy object:

• importance, used for deciding which object is a candidate for failing when several objects
cannot all meet their deadlines,

• arrival rate, a cycle for an object to be activated,
• worst case processing time, an estimate of the time within which an object is expected to

finish execution, and

• deadline time, the time left until an object has to finish execution.

Based on this information, a base policy object decides which scheduling algorithms - - rate mono-
tonic scheduling, earliest deadline first scheduling, etc. - - to use. The adaptat ion mechanism taken
in real-time operating systems such as Spring-kernel[Stankovic and Ramamri tham 89] should be in-
tegrated into our real-time scheduler in order to handle dynamic objects.

4.3 Free-grained objects

In environments like ours, there are various sizes of objects due to the diversity of programming
languages and applications. The system slhould provide a mechanism that efficiently manages

36

4 The Muse Operating System - - Examples of the Muse Object Architecture

Figure 3: The Simplified View of the Hierarchical Policies

storage for objects of various sizes. Muse solves this problem by providing several memory meta-
objects that implement different types of memory management policies. For example, if an object is
fine-grained, a memory meta~object may locate two or more objects within the same address space,
so that communication overhead, which is mainly caused by context switching, can be reduced.
Figure 4 shows five objects located in three address spaces. Objects A and B and objects C and
D reside in the same address spaces, respectively, while object E occupies its own address space.
If object C communicates with objects A and B, this causes context switching since they are
located in different address spaces. If they communicate with each other frequently, they should
be incorporated into the same address space using mechanisms provided by the memory meta-
object. This idea is derived from the task forces in StarOS and Medusa. Unlike the task forces,
this scheme is fully dynamic and not visible to programmers. A memory meta-object performs this
task in cooperation with other meta-objects such as a mailer meta-object and a decision maker
meta-object. This scheme is also applied to reduce the context switching overhead when two objects
are located on different hosts.

Object migration like this may be dangerous. In particular, it might increase, rather than
decrease, context switching overhead. For example, assume that the left most address space and
other address spaces are located at different hosts. In Figure 4, passing a message between objects
C and E means delivering the message across hosts. This increases overhead for communication

37

4 The Muse Operating Sys tem - - Example,~ of the Muse Object Architecture

address space address space address space

. iii
gi

, ~ ~ ~ ! . : : ~ ~::iiiii:~i~:iii~:i~:i~iiiiiii~iii::ii~!i!~:~i:~iii~::~:~:..:~::~.:.~ ~ e ~ ~ ~ ~ : : : : : ~ I

~ ~ . . ~ m eta- o [3j e c ~ i ;i i i i i i i ~ i i i ~ { ~
~, .~ ~iii~::i ii~ i i i!iii::~::~ii::~ r-:--::::i~..'..'~.~! ""
'~,{~'-:i:~ ii~".'-:4~i i-:'.-':i-:i~:;i~:;:;:;i~i~i~i~::~i~::~::~::~::~::~::~:: :;:;:;:;i~i~ili~i~i~i:'..'~" "":""?"'...'~'~'~"

Figure 4: Address Spaces and its Memory Meta-object

between them after moving object C to A and B's address space. To handle this potential problem
of migration, we use a new computing model called the Computat ional Field Model (CFM for
short), which is best described in terms of some common terms from physics [Tokoro 90]. CFM
defines a metric space composed of:

• mass, representing the size of an object,

• distance, representing the logical distance between objects: communication bandwidth and
latency are considered along with geographical distance,

• gravitational forces, representing communication frequency between objects and the amount
of data objects transmit to one another,

• repulsive forces, representing the computing load around an object, and

• inertia or friction, representing the cost of object migration.

CFM facilitates a decisions about object migration.
Furthermore, in cooperation with a mailer meta-object, communication between objects can

sometimes be translated to local procedure: calls. Since a mailer meta-object can trace paths of
communication between objects, if the semantics of a communication is the same as local procedure
calls, this communication is a candidate fo:r bypassing meta-objects: a method is invoked by the
local procedure call without assistance of a mailer meta-object.

Most large-scale distributed systems rely on each object having a unique ID. There are several
issues that arise when this approach is taken. An ID is usually assigned according to an object 's
lifetime and granularity. It may also depend on whether an object is shared with other objects.
Unique IDs for coarse-grained objects must be large, since there are a large number of objects in

38

4 The Muse Operating System - - Examples of the Muse Object Architecture

the environment. For fine-grained objects, though, it is difficult to use the same ID format. It is too
big, in practice. For instance, our current implementation, which is not unusual, uses 96-bit unique
ID's for external reference; of course, 96-bit references for local objects are simply not acceptable.

If we give up using unique ID to identify fine-grained objects, we have to introduce another
mechanism that can .distinguish them. There are at least two methods for doing this:

• The uniqueness of an identifier can be guaranteed within a domain but not throughout the
whole system. This makes it difficult to determine whether two objects are identical and to
determine which objects belong to different domains.

• A unique ID can be assigned when an object is referenced. This reduces the utilization of
the unique ID. However, this increases the difficulty of object migration, since an object
containing local IDs is only valid in the original domain.

In the current implementation, we introduce two or more ID management meta-objects which
guarantee the uniqueness of object IDs. We designate objects with IDs issued by an ID management
meta-object in the meta-space supporting the object. Also, an object ID is assigned when the object
is referenced by others.

4.4 S u m m a r y

Muse has several features which distinguish it from other object-based operating systems such as
HYDRA, Amoeba, Clouds, ARTS, and so on. First, Muse objects are active, while existing object-
oriented operating systems generally have passive objects. For instance, in the usual approach, an
object is defined passively, such a file or memory object, and requires separate processes (which
in some systems are also objects) as an execution environment for executing its methods. Second,
Muse provides reflective facilities based on the Muse object architecture. Each object has its
own meta-space. This allows the system to evolve, since each object can monitor its own status
(and that of other objects) to tailor the system for the most efficient object execution. Third,
Muse provides an inheritance mechanism that encourages object-oriented programming. The class
hierarchy is used at compile-time while a delegation mechanism is used at run-time. According to
the definition of [Wegner 87], Muse is an object-oriented operating system.

There are several issues in designing object-oriented operating systems and services. They in-
clude: object granularity, treatment of language objects and system objects, object sharing for
efficiency, dealing with transparency, and controlling dependency. Each of the services described
above has unique features that can be implemented relatively easily based on the Muse object ar-
chitecture. Providing objects MetaClass and ClassTemplate makes it possible to define objects in a
uniform way independent of the programming languages in which the objects are implemented. We
can also use class semantics which separate the specification and its implementations. We can meet
real-time constraints of application even though schedulers compose a hierarchical structure. Our
scheme for hierarchical scheduling can also apply to systems based on collective kernel structuring.
The Muse object architecture makes it far easier to implement free-grained objects than conven-
tional approaches. Meta-objects facilitate the definition of objects with any granularity and the
optimization of object execution such as hand-off scheduling and identifier management. Systems
such as Emerald[Jul et al. 88] and Amber[Chase et al. 87] support fine-grained objects and their

39

5 Implementation

migration. These systems, however, provide these services for a single programming language. Muse
can define objects in such a way that there is no distinction between objects supported by operating
systems and objects supported by programming languages in a multi-lingual environment.

5 Implementat ion

To give a better feel for the Muse object architecture, we will briefly describe the prototype
implementation of the Muse operating system. Figure 5 shows a simplified view of the object
structure of the Muse operating system version 0.3. Although the architecture can support more,

iiiii;ii?iliiii!i! ~
: .: . : . : . : . : . ::::

iiiiiiiiiiiiiiiiiii ~
iiiiiiiiiiii~iiiill

: : : : : : : : : • -

!i!i!i!i!i!iii!i!i!

i ::i!:il

.:.:.:.:.:...:.:..

!i!i!i!i!i!i!i;i;i iiiii;iiiiiiii i .

Figure 5: The Simplified View of the Object Structure of the Muse Operating System Version 0.3

version 0.3 uses only three layers of meta-hierarchy: an object space, a meta-space of the objects
in an object space, and a meta-meta-space of the objects in a meta-space. Meta-objects in the
meta-meta-space implement hardware dependent functions.

To implement the Muse object architecture, we introduce the following fundamental facilities:

40

6 Conclusion

• MuseCore provides a virtual machine environment in which objects can utilize the Muse object
architecture. It employs a Con tex t structure which is used for mapping object execution to
CPU execution. It also maintains the relationship between an object and its meta-objects
and manages the transfer of control between them.

• A reflector (indicated by m~, which specifies the m-th instance of a reflector in the n-th
layer of the meta-hierarchy in Figure 5) is an entry point through which objects, explicitly or
implicitly, invoke meta-computing. An object is connected to its meta-space by a reflector:
an object can know the name of meta-objects defined in the meta-space through this reflector.
In the implementation, a reflector also contains parts of the functions of mailer and scheduler
meta-objects for efficiency.

shaded oval Q denotes meta-objects constituting the Muse kernel. In the im- In Figure 5, a

plementation, these meta-objects are assembled into the same address space. They make up one
meta-space that can be seen through reflector m °. We call this meta-space the meta-meta-space.

A stripped oval @ ' ~ denotes the meta-objects that implement Muse system functions: for ex-

ample, pagers for virtual memory management, protocol handlers for network communication, and
decision makers for object migration. In the implementation, there are several meta-spaces that
can be seen through reflectors (ml and m~ in the figure). Some meta-objects might be shared
between two or more meta-spaces. The meta-objects in these meta-spaces are supported by the

dotted oval (i -) denotes objects that constitute applications. Each object meta-nleta-space. A

is supported by one of the meta-spaces.
For reflective computing, MuseCore implements the primitives described in Subsection 3.4. In

implementation, we introduce the following three primitives:

• M : an object makes a request of meta-computing: an object invokes a method of a meta-
object in its meta-space through its reflector,

• R : a meta-object reflects the result of meta-computing: it resumes object execution, and
• C : objects designate parameters of MuseCore which is used for managing a C o n t e x t structure:

for example, creating and destroying it and binding Co n tex t to external events.

6 Conc lus ion

Given the rapid advances in network technology, we crave the advent of ultra large-scale, open,
self-advancing, and distributed environments. Existing structuring concepts for operating systems
are, however, insufficient for developing such environments. We propose the Muse object architec-
ture and demonstrate the Muse operating system, which is intended to support environments like
these. The novel features of this architecture include:

• The notion of an object and its meta-objects gives programmers a clear abstraction of the
system. We distinguish the meta-level abstraction from the object-level abstraction in a
natural way.

41

Referen ces

• Reflective computing provides a basic mechanism to realize a self-advancing system. This
is important in the kinds of environments in which we are interested. The system can be
tailored to suit the objects that comprise an application.

• The system is flexible and adaptable. Several operating system policies can coexist in the
system.

Version 0.3 of the Muse operating system is running on Sony NEWS workstations each of which
has 25MHz MC68030 CPU and a minimum 4MB of physical memory without external cache. The
system is written in the C-b+ programming language. We experiments using version 0.3 of the
Muse operating system on, for example:

• negotiation between conflicting meta-objects,

• supporting portable (and mobile) hosts, and

• porting the system to different types of hardware including a Sun3, Sony RISC-NEWS work-
stations with MIPS R3000 CPU, the Symmetry shared memory multiprocessor machine, and
a portable computer.

Acknowledgments

We give our great thanks to Dr. tIideyuki Tokuda of Carnegie Mellon University and the
members of Sony Computer Science Laboratory Inc. Several discussions with them were helpful to
us in inventing the architecture, designing the system, and determining the implementation strategy
of the system. We also thank Professor David Notkin of the University of Washington who read
an early draft of this paper carefully and giw.' us valuable comments to improve the quality of this
paper. We could not have finished this paper without his efforts.

References

[Accetta et al. 86] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. Mach: A New Kernel Foundation For UNIX Development.
In USENIX 1986 Summer Conference Proceedings. USENIX Association, June 1986.

[Almes et al. 85] Guy T. Almes, Andrew P. :Black, Edward D. Lazowska, and Jerre D. Noe. The
Eden System: A Technical Review. IEEE Transactions on Software Engineering, Vol. SE-11,
No. 1, January 1985.

[Armand et al. 90] Francois Armand, Frederic Herrmann, Jim Lipkis, and Marc Rozier. Multi-
threaded Processes in Chorus/MIX. In Proceedings of EUUG Spring'90 Conference, April 1990.

[Campbell et al. 87] Roy Campbell, Gray Jotmston, and Vincent Russo. Choices (Class Hierarchi-
cal Open Interface for Custom Embedded Systems). Operating Systems Review, Vol. 21, No. 3,
July 1987.

42

References

[Chase et al. 87] Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and
Richard J. Littlefield. The Amber System: Parallel Programming on a Network of Multipro-
cessors. In Proceedings of the 11th ACM Symposium on Operating System Principles. ACM,
November 1987.

[Cheriton 88] David R. Cheriton. The V Distributed System. Communications of the ACM, Vol. 31,
No. 3 pp. 314-333, March 1988.

[Cohen and Jefferson 75] Ellis Cohen and David Jefferson. Protection in the HYDRA Operating
System. In Proceedings of the 5th ACM Symposium on Operating System Principles. ACM,
November 1975.

[Creasy 81] R. J. Creasy. The Origin of the VM/370 Time-Sharing Systems. IBM Journal of
Research and Development, Vol. 25, No. 5 pp. 483-490, 1981.

[Dijkstra 68] Edsger W. Dijkstra. The Structure of the "THE" - - Multiprogramming System.
Communications of the ACM, Vol. 11, No. 5, May 1968.

[Goldberg and Robson 83] Adele Goldberg and David Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley, 1983.

[Habermann et al. 76] A. N. Habermann, L. Flon, and L. Coopride. Modularization and Hierarchy
in a Family of Operating Systems. Communications of the ACM, Vol. 19, No. 5, May 1976.

lintel 82] Intel. iMAX 432 Reference Manual, 1982. Order Number: 172103-002.

[Jones et al. 79] Anita K. Jones, Robert J. Chansler Jr., Ivor Durham, Karsten Schwans, and
Steven R. Vegdahl. StarOS, a Multiprocessor Operating System for the Support of Task Forces.
In Proceedings of the 7th ACM Symposium on Operating System Principles. ACM, December
1979.

[Jul et al. 88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-Grained Mobil-
ity in the Emerald System. ACM Transactions on Computer Systems, Vol. 6, No. 1, February
1988.

[Lampson and Sturgis 76] Butler W. Lampson and Howard E. Sturgis. Reflections on an Operating
System Design. Communications of the A CM, Vol. 19, No. 5, May 1976.

[Li 86] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. Technical report,
Yale University, December 1986.

[Lieberman 86] Henry Lieberman. Using Prototypical Objects to Implement Shared Behavior in
Object Oriented Systems. In Proceedings of Object-Oriented Programming Systems, Languages
and Applications in 1986. ACM, September-October 1986. also appeared in SIGPLAN NO-
TICES, Vol.21, No.ll.

[Maes and Nardi 88] :Pattie Maes and Daniele Nardi, editors. META-LEVEL ARCHITECTURE
AND REFLECTION. North-Holland, 1988.

43

References

[Mullender 87] Sape J. Mullender, editor. T~e Amoeba distributed operating system: Selected papers
1984 - 1987. Centre for Mathematics and Computer Science, 1987. CWI Tract 41.

[Notkin 90] David Notkin. Proxies: A Software Structure for Accommodating Heterogeneity. Soft-
ware Practice and Experience, Vol. 20, No. 4, April 1990.

[Organick 72] Elliott I. Organick. The Multics System: An Examination of Its Structure. The MIT
Press, 1972.

[Ousterhout 80] John K. Ousterhout. Partitioning and Cooperation in a Distributed Multiproces-
sot Operating System: Medusa. Technical Report CMU-CS-80-112, Department of Computer
Science, Carnegie-Mellon University, April 1980.

[Redell et al. 80] David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer, William C.
Lynch, Paul R. McJones, Hal G. Murray, and Stephen C. Purcell. Pilot: An Operating System
for a Personal Computer. Communications of the ACM, Vol. 23, No. 2, February 1980.

[Rozier et al. 88] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Her-
rmann, C. Kaiser, S. Langlois, P. L~onard, and W. Neuhauser. Chorus Distributed Operating
Systems. Computing Systems, Vol. 1, No. 4, Fall 1988.

[Russo et al. 88] Vincent Russo, Gary Johnston, and Roy Campbell. Process Management and
Exception Handling in Multiprocessor Operating Systems using Object-Oriented Design Tech-
niques. In Proceedings of Object-Oriented Programming Systems, Languages and Applications in
1988. ACM, September 1988. also appeared in SIGPLAN NOTICES, Vol.23, No.ll.

[Shapiro 86] Marc Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy Prin-
ciple. In Proceedings of the 6th International Conference on Distributed Computing Systems,
May 1986.

[Shapiro et al. 89] Marc Shapiro, Yvon Gourhant, Sabine Habert, Laurence Mosseri, Michel Ruffin,
and C~line Valet. SOS: An Object-Oriented Operating System - - Assessment and Perspectives.
Computing Systems, Vol. 2, No. 4, 1989.

[Smith 84] Brian Cantwell Smith. Reflection and Semantics in Lisp. In Proceedings of the 11th
A CM Symposium on Principles of Programming Languages, January 1984.

[Spafford 86] Eugene Howard Spafford. Kernel Structures for a Distributed Operating System. PhD
thesis, Georgia Institute of Technology, May 1986.

[Specter et al. 87] A. Z. Specter, D. Thompson, R. F. Pausch, J. L. Eppinger, D. Duchamp,
R. Draves, D. S. Daniels, and J. J. Bloch. Camelot: A Distributed Transaction Facility for
Mach and the Internet - An Interim Report. Technical Report CMU-CS-87-129, Department of
Computer Science, Carnegie-Mellon University, June 1987.

[Stankovic and Ramamritham 89] John A. Stankovic and Krithi Ramamritham. The Spring Ker-
nel: A New Paradigm for Real-Time Operating Systems. Operating Systems Review, Vol. 23,
No. 3, July 1989.

44

Referen ces

[Swinehart et al. 86] Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, and Robert B.
Hagmann. A Structural View of the Cedar Programming Environment. ACM Transactions on
Programming Languages and Systems, Vol. 8, No. 4, October 1986.

[Teraoka et al. 89] Fumio Teraoka, Yasuhiko Yokote, and Mario Tokoro. Muse-IP: A Network Layer
Protocol for Large Distributed Systems with Mobile Hosts. In Proceedings of 4th International
Joint Workshop on Computer Communications, July 1989. also available as SCSL-TR-89-003 of
Sony Computer Science Laboratory Inc.

[Teraoka et al. 90] Fumio Teraoka, Yasuhiko Yokote, and Mario Tokoro. Virtual Network: Towards
Location Transparent Communication in Large Distributed Systems. In Proceedings of 5th Inter-
national Workshop on Computer Communications, June 1990. also appeared in SCSL-TR-90-005
of Sony Computer Science Laboratory Inc.

[Tokoro 90] Mario Tokoro. Computational Field Model: Toward a New Computing Model/Meth-
odology for Open Distributed Environment. In Proceedings of the 2nd IEEE Workshop on Future
Trends in Distributed Computing Systems, September 1990. also appeared as Technical Report
SCSL-TR-90-006.

[Tokuda 90] Hideyuki Tokuda. Private Communication, August 1990.

[Tokuda and Mercer 89] Hideyuki Tokuda and Clifford W. Mercer. ARTS: A Distributed Real-
Time Kernel. Operating Systems Review, Vol. 23, No. 3, July 1989.

[Wegner 87] Peter Wegner. Dimensions of Object-Based Language Design. In Proceedings of Object-
Oriented Programming Systems, Languages and Applications in 1987. ACM, October 1987. also
appeared in SIGPLAN NOTICES, Vol.22, No.12.

[Wulf et al. 74] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.
HYDRA: The Kernel of a Multiprocessor Operating System. Communications of the A CM,
Vol. 17, No. 6, June 1974.

[Yokote et al. 89] Yasuhiko Yokote, Fumio Teraoka, and Maxio Tokoro. A Reflective Architecture
for an Object-Oriented Distributed Operating System. In Proceedings of European Conference on
Object-Oriented Programming, July 1989. also appeared in SCSL-TR-89-001 of Sony Computer
Science Laboratory Inc.

[Yonezawa and Tokoro 87] Akinori Yonezawa and Mario Tokoro, editors. Object-Oriented Concur-
rent Programming. The MIT Press, 1987.

[Zimmermann et al. 81] Hubert Zimmermann, Jean-Serge Banino, Alain Caristan, Marc Guille-
mont, and G~rard Morisset. Basic Concepts for the Support of Distributed Systems: The Cho-
rus Approach. In Proceedings of the 2nd International Conference on Distributed Computing
Systems. IEEE, 1981.

45

Glossary

Glossary

O b j e c t s . An object is a fundamental entity in the system. It has local storage and methods. It
also provides uniform interface with the outside of the object. The local storage of an object is
accessed by a method invoked by an incoming request message.

C o n c u r r e n t o b j e c t s . A concurrent object is an object which encapsulates local storage, meth-
ods, and a virtual processor. Local storage of a concurrent object is accessed by methods executed
by a virtual processor: one and only one activity is conceptually associated with a concurrent
object to execute a method. A concurrent object facilitates synchronization problems: concurrent
requests are synchronized at the entry point of the object.

Classes . A class describes the similarity ot, a set of objects. For example, it contains methods
which can access the internal structure of an ,object. A class also acts as a template for creation of
an object.

M e t a - o b j e c t s . A meta-object is itself an object which provides an environment for executing the
object. Meta-objects implement the meta-functions of objects such as scheduling, communication,
and object management.

R e f l e c t i v e c o m p u t i n g . Reflective computing allows an object to alter its meta-functions, usu-
Mly represented as meta-objects, during its execution. An object and its meta-objects are causally
connected: the internals of the object are represented as meta-objects.

Class i n h e r i t a n c e . A class can be defined as a subclass of another class: classes compose a hi-
erarchicM structure to represent difference and to encourage differential programming. Inheritance
is usually a programming and a compile-time facility.

D e l e g a t i o n . Delegation is a mechanism which forwards an incoming message to a designated
object. The environment of the object is also forwarded to the designated object. Delegation is
usually a run-time facility.

46

